دوماه نامه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشکده آب و خاک، دانشگاه زابل، زابل، ایران

2 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان ملاثانی، ملاثانی، ایران

چکیده

استفاده مناسب و کاربردی از ضایعات کشاورزی موجب کاهش فشار بر محیط‌زیست خواهد شد. این پژوهش با هدف بررسی اثرات بیوچار در شرایط تنش آبی و شوری آب آبیاری بر ویژگی­های فیزیکی و شیمیایی خاک انجام شد. آزمایش در شرایط گلخانه به­صورت فاکتوریل و در قالب طرح کاملا تصادفی با سه تکرار انجام شد. فاکتورها شامل آب آبیاری (60، 80 و 100 درصد نیاز آبی گیاه به­ترتیب، I1، I2 و I3)، بیوچار تهیه شده از درختان جنگلی شمال در دمای 300 درجه سلسیوس (صفر، 2 و 4 درصد جرمی خاک گلدان به‌ترتیب B1، B2 و B3) و کیفیت آب (با قابلیت هدایت الکتریکی 1، 4 و 7 دسی‌زیمنس بر متر به‌ترتیب S1، S2 و S3) بود. گلدان­ها به­صورت یک روز در میان توزین شده و کمبود آب تا حد رطوبت زراعی براساس تغییرات جرم گلدان محاسبه شد. بعد از پایان فصل کشت کینوا (برداشت نیمه اول فروردین 1401)، برای بررسی اثر بیوچار بر میزان عناصر غذایی خاک و برخی ویژگی­های فیزیکی و شیمیایی خاک در شرایط تنش آبی و شوری آب آبیاری، نمونه­برداری از خاک هر گلدان انجام شد. نمونه­ها به آزمایشگاه منتقل و ویژگی­های جرم مخصوص ظاهری و حقیقی، pH و شوری خاک، درصد نیتروژن، فسفر و پتاسیم قابل جذب در آزمایشگاه اندازه­گیری شد. نتایج نشان داد مقدار بیوچار، آب آبیاری و شوری آب و اثرات متقابل آن­ها در سطح احتمال یک و پنج درصد بر ویژگی­های اندازه­گیری شده تأثیر معنی­داری داشت. افزودن 2 و 4 درصد جرمی بیوچار به خاک سبب افزایش مقدار فسفر (به­ترتیب 35 و60 درصد)، پتاسیم (57 و 61 درصد)، نیتروژن (83 و 91 درصد)، pH (13 و 13 درصد) و قابلیت هدایت الکتریکی خاک (EC) (13 و 57 درصد) شد. جرم مخصوص حقیقی خاک با افزودن 2 و 4 درصد جرمی بیوچار به خاک به‌ترتیب 13 و 21 درصد و جرم مخصوص ظاهری به‌ترتیب 11 و 22 درصد کاهش یافت. کاهش عمق آب آبیاری و افزایش شوری آب باعث افزایش مقدار فسفر، پتاسیم، نیتروژن، pH و EC خاک شد. مقدار آب آبیاری تأثیر معنی­داری بر جرم مخصوص ظاهری و حقیقی نداشت اما شوری آب آبیاری سبب افزایش معنی­دار جرم خصوص ظاهری و حقیقی خاک شد. اگر چه افزایش بیوچار به خاک باعث افزایش عناصر غذایی مورد نیاز گیاه در خاک شد اما با توجه به این­که افزودن این ماده آلی به خاک در سطوح زیاد سبب افزایش قابلیت هدایت الکتریکی خاک می­شود لذا استفاده از مقادیر زیاد بیوچار در خاک باید با احتیاط انجام شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation of the Effect of Biochar on the Physical and Chemical Properties of Soil under Quinoa Cultivation under Water and Salinity Stress Conditions

نویسندگان [English]

  • O. Toorajzadeh 1
  • H. Piri 1
  • A. Naserin 2
  • M.M. Chari 1

1 Department of Water Engineering, Faculty of Water and Soil, University of Zabol, Zabol, Iran

2 Department of Water Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

چکیده [English]

Introduction
Appropriate and practical use of agricultural waste reduce the pressure on the environment. Recently, there has been significant promotion of biochar utilization in agricultural lands. It serves as a valuable source of organic material for enhancing plant growth and as an effective soil amendment to improve soil properties. Due to its unique chemical and physical properties, biochar can be used as a soil conditioner and has many benefits for optimal agricultural and environmental management. Studies have shown that biochar is a useful amendment for improving the physical and chemical properties of soil and effective in maintaining organic matter and soil moisture.
 
Materials and Methods
 This research was conducted with the aim of investigating the effects of biochar on the physical and chemical properties of soil under conditions of water stress and irrigation using saline water. The experiment was carried out in a factorial based on a completely randomized design with three replications in greenhouse conditions. The treatments include three irrigation water treatments (60, 80, and 100 percent water requirement of the plant, respectively, I1, I2, and I3), three treatments of biochar prepared from northern forest trees at a temperature of 300 degrees Celsius (0, 2, and 4 percent by weight of potting soil, respectively, B1, B2, and B3) and three water quality treatments (with electrical conductivity 1, 4 and 7 dS/m, respectively, S1, S2 and S3). The pots were weighed every other day and at each level of biochar and salinity, the water deficit up to the agricultural moisture level was calculated based on the changes in the pot's weight. After harvesting (in the first half of April 2022), in order to investigate the effect of biochar on the amount of soil nutrients and some physical and chemical parameters of the soil under the conditions of water stress and irrigation water salinity, sampling was done from the soil of each pot. The samples were taken to the laboratory and parameters of apparent and actual specific gravity, acidity and salinity of the soil, percentage of nitrogen, phosphorus and potassium absorbable of the soil were measured in the laboratory. Referring to the yield to irrigation water ratio, water productivity is obtained by the following relation (Payero et al., 2009): WP=Y/IR, where, WP represents water productivity (kg/m3), Y denotes the yield (kg/ha), and IR shows the amount of irrigation water (m3/ha). Analysis of variance for the results obtained from different treatments was conducted using SAS software (SAS 9.1, SAS Institute, Cary, NC, USA). The mean values of the main factors and interactive effects were compared using the Duncan method at the 1% and 5% levels of significance.
 
Results and Discussion
The results showed that the amount of biochar, irrigation water and water salinity and their mutual effects had a significant effect on the measured parameters at the probability level of one and five percent. Adding 2 and 4 mass percent biochar to the soil increased the amount of phosphorus (35 and 60%, respectively), potassium (57% and 61%), nitrogen (83% and 91%), pH (13% and 13%) and electrical conductivity (EC) (13% and 57%) of the soil. By adding 2% and 4% of biochar to the soil, the actual specific gravity of the soil decreased by 13% and 21%, respectively, and the apparent specific gravity decreased by 11% and 22%, respectively. The actual and apparent specific gravity of the soil decreased by adding biochar to the soil. Decreasing the depth of irrigation water and increasing water salinity increased the amount of phosphorus, potassium, nitrogen, pH and EC of the soil. The amount of irrigation water had no significant effect on the apparent and actual specific gravity, however, the salinity of the irrigation water caused a significant increase in the apparent and actual specific gravity of the soil. Although the addition of biochar to the soil increased the nutrients required by plants in the soil, high amounts of biochar in the soil should be used careful, because the addition of this organic matter to the soil at high levels increased soil EC significantly. Based on the findings derived from the research, the utilization of biochar is recommended as a viable approach for enhancing both the chemical quality and productivity of nutrient-poor and sandy soils.

کلیدواژه‌ها [English]

  • Apparent specific gravity
  • Electrical conductivity
  • Nitrogen
  • Phosphorus
  • Potassium

©2024 The author(s). This is an open access article distributed under Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source.

  1. Abel, S., Peters, A., Trinks, S., Schonsky, H., Facklam, M., & Wessolek, G. (2013). Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil. Geoderma, 202–203:183–191. https://doi.org/ 10.1016/j.geoderma.2013.03.003
  2. Abrishamkesh, S., Gorji, M., Asadi, H., Bagheri-Marandi, G., & Pourbabaee, A. (2015). Effects of rice husk biochar application on the properties of alkaline soil and lentil growth. Plant Soil and Environment, 61, 475-482. (In Persian with English abstract)
  3. Agegnehu, G., Bass, A.M., Nelson, P.N., & Bird, M.I. (2016). Benefits of biochar, compost and biochar–compost for soil quality: maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of the Total Environment, 543, 295-306. https://doi.org/10.1016/j.scitotenv.2015.11.054
  4. Akhtar, S.S., Andersen, M.N., & Liu, F. (2015). Biochar mitigates salinity stress in potato. Journal of Agronomy and Crop Science, 5, 368- 378. https://doi.org/10.1111/jac.12132
  5. Algosaibi, A.M., El-Garawany, M.M., Badran, A.E., & Almadini, A.M. (2015). Effect of irrigation water salinity on the growth of Quinoa plant seedlings. Journal of Agricultural Science, 7(8), 205. https://doi.org/10.5539/ jas.v7n8p205
  6. Bhupindar, S.S. (2014). Nanothechnology in agri- food production: an overview. Nanotechnology science and applications. India. www.Dovepress. 7:31-53.
  7. Blanco-Canqui, H. (2017). Biochar and soil physical properties. Soil Science Society of America Journal, 81(4), 687-711. https://doi.org/10.2136/sssaj2017.01.0017
  8. Bremner, J.M. (1996). Nitrogen total. In: Methods of Soil Analysis. D. L. Sparks et al. (eds) part III, 3rd ed. Am. Soc. Agron. Inc., Madison, WI. Pp. 1085-1122.
  9. Brodowski, S., Amelung, W., Haumaier, L., & Zech, W. (2007). Black carbon contribution to stable humus in German arable soils. Geoderma, 139, 220–228. https://doi.org/10.1016/j.geoderma.2007.02.004
  10. Busscher, W., Novak, J.M., & Ahmedna, M. (2011). Physical effects of organic matter amendment of a southeastern US coastal loamy sand. Soil Science Society of American Journal, 176, 661-667. https://doi.org/10.1097/ SS.0b013e3182357ca9
  11. Cheng, C.H., Lehmann, J., Thies, J.E., & Burton, S.D. (2008). Stability of black carbon in soils across a climatic gradient. Journal of Geophysical Research Biogeosciences, 113, 10.
  12. Chintala, R., Mollinedo, J., Schumacher, T.E., Papiernik, S.K., Malo, D.D., Clay, D.E., Kumar, S., & Gulbrandson, D.W. (2013). Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous and Mesoporous Materials, 179, 250-257.
  13. Chintala, R., Mollinedo, J., Schumacher, T.E., Malo, D.D., & Julson, J.L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60, 393-404.
  14. Dabhi, R., Bhatt, N., & Pandit, B. (2013). Super absorbent polymersan innovative water saving technique for optimizing crop yield. International Journal of Innovative Research in Science, Engineering and Technology, 10, 5333-5340.
  15. Deoband Hafeshjani, L., Naseri, A., Houshmand, A., Abbasi, F., & Soltani Mohammadi, A. (2016). Investigating the effect of sugarcane bagasse biochar on the chemical properties of a sandy loam soil. Journal of Irrigation Science and Engineering, 40, 72-63. (In Persian with English abstract)
  16. Devereux, R.C., Sturrock, C.J., & Mooney, S.J. (2013). The effects of biochar on soil physical properties and winter wheat growth. Journal of Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 103(1), 13-18.
  17. Domene, X., Mattana, S., Hanley, K., Enders, A., & Lehmann, J. (2014). Medium -term effects of corn biochar addition on soil biota activities and functions in a temperate soil cropped to corn. Soil Biology and Biochemistry, 72, 152-162.
  18. Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. pp. 13- 32. In Lehmann J. and S. Joseph (Eds). Biochar for Environmental Management: Science and Technology. Earthscan: London, UK.
  19. Elewa, T.A., Sadak, M.S., & Saad, A.M. (2017). Proline treatment improves physiological responses in quinoa plants under drought stress. Bioscience Research, 14(1), 21-33.
  20. Fathi Gerdelidani, A., & Mirseyed, H. (2015). Different aspects of biocurrent effects in improving soil quality. International Conference on Applied Research in Agriculture, Tehran, 22 May: 1-12. (In Persian with English abstract)
  21. Forohar, M., Khorasani, R., Fototvat, A., Shariat-Madari, H., & Khavazi, K. (2017). The effect of different biochars and their raw materials on some soil chemical properties and nutrients over time in a calcareous soil. Water and Soil Journal, 32(2), 299-312. (In Persian with English abstract)
  22. Ghorbani, M., & Amir Ahmadi, A. (2017). The effect of rice husk biochar on some soil physical properties and corn growth in a loamy soil. Journal of Soil Research, 32(3), 306-319. (In Persian with English abstract)
  23. Gopal, M., Gupta, A., Hameed, K.S., Sathyaseelan, N., Rajeela, T.K., & Thomas, G.V. (2020). Biochars produced from coconut palm biomass residues can aid regenerative agriculture by improving soil properties and plant yield in humid tropics. Biochar, 2, 211-226. https://doi.org/10.1007/s42773-020-00043-5
  24. Guvili, A., Mousavi, A.A., & Kamkar Haghighi, A. (2016). Effect of cattle manure biochar and moisture stress on growth characteristics and spinach water use efficiency in greenhouse conditions. Water Research in Agriculture, 30(2), 259-243. (In Persian with English abstract)
  25. Hardie, M., Clothier, B., Bound, S., Oliver, G., & Close, D. (2014). Does biochar influence soil physical properties and soil water availability? Plant Soil, 376, 347–361. https://doi.org/10.1007/s11104-013-1980-x
  26. Hasanpour, E., Shirvani, M., Haj Abbasi, M.A., & Majidi, M.M. (2022). Acidic biochars on some chemical characteristics and ability to absorb nutrients of calcareous soils. Journal of Water and Soil Sciences, 26(2), 39-59. (In Persian with English abstract)
  27. HE, L.L., Zhong, Z.K., & Yang, H.M. (2017). Effects on soil quality of biochar and straw amendment in conjunction with chemical fertilizers. Journal of Integrative Agriculture, 16(3), 704-712. https://doi.org/10.1016/S2095-3119(16)61420-X
  28. Hirich, A., Choukr, R., & Jacobsen, S. (2013). The combined effect of deficit irrigation by treated wastewater and organic amendment on quinoa (Chenopodium quinoa) productivity. Journal Desalination and Water Treatment, 25, 2208-2213.
  29. Hosseini, M., Movahedi Naeini, S.A., & Bameri, A. (2015). The effect of different tillage methods on the amount of available potassium in soils with different extractants in a soil with high specific surface area. Water and Soil, 4, 966-979. (In Persian with English abstract)
  30. Ibrahim, O.M., Bakry, A.B., El Kramany, M.F., & Elewa, T.A. (2015). Evaluating the role of biochar application under two levels of water requirements on wheat production under sandy soil conditions. Global Journal of Advanced Research, 2(2), 411-418.
  31. Kang, J., Hesterberg, D., & Osmond, D.L. (2008). Soil organic matter effects on phosphorus sorption: A path analysis. Soil Science Society of America Journal, 73, 360-366
  32. Karmaka, S., Lague, C., Agnew, J., & Landry, H. (2007). Integrated decision support system (DSS) for manure management. Computers and Electronics, 57, 190-201. https://doi.org/10.2136/sssaj2008.0113
  33. Knowles, O., Robinson, B., Contangelo, A., & Clucas, L.(2011). Biochar for the mitigation of nitrate leaching from soil amended with biosolids. Science of the Total Environment, 409, 3206 -3210.
  34. Kumar, S., Masto, RE., Ram, LC., Sarkar, P., George, J., & Selvi, VA. (2013). Biochar preparation from Parthenium hysterophorus and its potential use in soil application. Ecological Engineering, 55, 67–72. https://doi.org/10.1016/ j.ecoleng.2013.02.011
  35. Laird, D.A., Fleming, P.D., Karlen, D.L., Wang, B., & Horton, R. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158, 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012
  36. Lehmann, J., & Joseph, S. (2009). Biochar for environmental management- an introduction. In: Lehmann J. and Joseph S. (Eds). Biochar for environmental management: Science and Technology. Earthscan, London, pp. 1–11.
  37. Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Theis, J., Luizao, F.J., Peterson, J., & Neves, E.G. (2006). Black carbon increases cation exchange capacity in soils. Soil Science Society of America Journal, 70, 1719–1730. https://doi.org/10.1016/j.orggeochem.2009.09.007
  38. Lim, T., Spokas, K., Feyereisen, G., & Novak, J. (2016). Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere, 142, 136-144. https://doi.org/10.1016/j.chemosphere.2015.06.069
  39. Luo, C., Deng, Y., Inubushi, K., Liang, J., Zhu, S., Wei, Z., Guo, X., & Luo, X., (2018). Sludge biochar amendment and alfalfa revegetation improve soil physicochemical properties and increase diversity of soil microbes in soils from a rare earth element mining wasteland. International Journal of Environmental Research and Public Health, 15(5). https://doi.org/10.3390/ijerph15050965
  40. Mahmoodabadi, M. (2018). Investigating the effect of sequential application of organic matter and irrigation with sodium water on the size distribution of secondary soil particles. Environmental Erosion Research, 15, 24. (In Persian with English abstract)
  41. Major, J., Rondon, M., Molina, D., Riha, S.J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333, 117–128. (In Persian with English abstract)
  42. Mensah, A.K., & Frimpong, K.A. (2018). Biochar and/or compost applications improve soil properties, growth, and yield of maize grown in acidic rainforest and coastal savannah soils in Ghana. International Journal of Agronomy, 7, 1-8.
  43. Mir, A., Piri, H., & Naserin, A. (2021). The effects of different levels of wheat biochar and water stress on the quantitative and qualitative characteristics of Carla (bitter melon) in pots. Water Research in Agriculture, 35(2), 170-185. (In Persian with English abstract)
  44. Mokami, A., Yazdan-Panah, N., & Saidenjad, A.H. (2022). The effect of using vermicompost and biochar on the morpho-physiological characteristics of quinoa under drought stress conditions. Iran Water and Soil Research, 53(1), 130-140. (In Persian with English abstract)
  45. Mukherjee, A., & Zimmerman, A.R. (2013). Organic carbon and nutrient release from a range of laboratory produced biochars and biochar-soil mixtures. Geoderma, 194, 122-30. https://doi.org/10.1016/j.geoderma.2012.10.002
  46. Najafi Ghairi, M. (2014). The effect of using different biochars on some soil characteristics and the ability to absorb some nutrients in a calcareous soil. Journal of Soil Research, 29(3), 351-358. (In Persian with English abstract)
  47. Najafi Ghiri, M., Abtahi, A., Owliaie, H.R., Hashemi, S.S., & Koohkan, H. (2011). Factors affecting potassium pools distribution in highly calcareous soils of southern Iran. Arid land Research and Management, 25, 313-327. (In Persian with English abstract)
  48. Najafi Ghiri, M., Bostani, H., & Mahmoudi, A. (2017). The effect of the remains of three plant species and their biochar on some characteristics and potassium status of a calcareous soil. Soil and Water Science Research Journal, 32(1), 25-36. (In Persian with English abstract)
  49. Negaresh, H., & Latifi, L. (2018). The origin of wind deposits in the east of Zabol through morphoscopy and physical and chemical analysis of sediments. Geography and Environmental Planning, 20(1), 1-22. (In Persian with English abstract)
  50. Nelissen, V., Rütting, T., Huygens, D., Staelens, J., Ruysschaert, G., & Boeckx, P. (2012). Maize biochars accelerate short-term soil nitrogen dynamics in a loamy sand soil. Soil Biology and Biochemistry, 55, 20-27. https://doi.org/ 10.1016/j.soilbio.2012.05.019
  51. Netondo, G.F., Onyango, J.C., & Beck, E. (2004). Sorghum and salinity: II. Gasexchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44, 806–811. https://doi.org/10.2135/cropsci2004.7970
  52. Olsen, S.R., and Sommers, L.E. (1990). Phosphorus. P 403-431. In: A.L. Page (ed), Method of soil analysis. Part 2. 2nd agron Monoger., ASA, Madison, WI.
  53. Page, A.L., Miller, R.H., & Keeney, D.R. (1982). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy. In Soil Science Society of America, 1159.
  54. Piri, H., Naserin, A., & Albalasmeh, A. (2022). Interactive effects of deficit irrigation and vermicompost on yield, quality, and irrigation water use efficiency of greenhouse cucumber. Journal of Arid Land, 14(11), 1274-1292. https://doi.org/10.1007/s40333-022-0035-7
  55. Rahimi-Alashti, S., Bahmanyar, M.A., Qajarspanlou, M., Sadegh-Zadeh, F., & Khodsi-Bidgoli, A. (2021). The effect of the use of some organic and inorganic amendments on the amount of high-use and low-use elements of the soil under quinoa cultivation under water stress conditions. Soil Management and Sustainable Production, 11(2), 25-48. (In Persian with English abstract)
  56. Rajabi, H. (2014). Effect of pistachio residue, sewage black mud, and chemical fertilizer on bio- provision and nitrogen and phosphorus absorption by spinach. Master Thesis. Shiraz University.
  57. Rezaei, N., Rezaghi, F., Sepaskhah, A., & Mousavi, A. (2017). The effect of biochar and irrigation water salinity on chemical properties of soil under bean cultivation. Journal of Soil and Water Science Research, 32(1), 13-24. (In Persian with English abstract)
  58. Robbiani, Z. (2013). Hydrothermal carbonization of biowaste/fecal sludge. Lappeenranta University of Technology, 41, 1-71.
  59. Shirmardi, M., & Tofighi, H. (2014). Effect of organic matter on phosphorus stabilization kinetics in several different soils. Iranian Soil and Water Research, 46, 567-577. (In Persian with English abstract)
  60. Singh, B.P., Hatton, B.J., Singh, B., Cowie, A.L., & Kathuria, A. (2010). Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. Journal of Environmental Quality, 39(4), 1224–1235.
  61. Sohi, S., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47-82. https://doi.org/10.1016/S0065-2113(10)05002-9
  62. Sun, H., Shi, W., Zhou, M., Ma, X., & Zhang, H. (2019). Effect of biochar on nitrogen use efficiency, grain yield and amino acid content of wheat cultivated on saline soil. Plant, Soil and Environment, 65, 83-89.
  63. Telahigue, D.C., Yahia, L.B., Aljane, F., Belhouchett, K., & Toumi, L. (2017). Grain yield, biomass productivity and water use efficiency in quinoa (Chenopodium quinoa) under drought stress. Journal of Scientific Agriculture, 1, 222-232. (In Persian with English abstract)
  64. Thaghafi, F., Qanei-Bafghi, M.J., & Shirmardi, M. (2021). The effect of palm tree waste biochar on element concentration, sodium absorption ratio and some physical properties of saline soil. Desert Ecosystem Engineering, 10(31), 85-94. (In Persian with English abstract)
  65. Van Zwieten, L., Kimber, S., Morris, S., Chan, K., Downie, A., Rust, J., Joseph, S., & Cowie, A. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327, 235-246. https://doi.org/10.1007/s11104-009-0050-x
  66. Walkey, A., & Black, I.A.(1934). An examination of the Degtjareeff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29-38.
  67. Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science, 181, 635-643. https://doi.org/10.1002/jpln.201700528
  68. Waraich, E.A., Ahmad, R.M., Saifullah, Y., & Ashraf, E. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 6, 764-777.
  69. Westeman, R.E.L. (1990). Soil testing and plant analysis. SSSA, Madison, Wisconsin, USA. 784p.
  70. Yao, F.X., Arbestain, M.C., Virgel, S.F., Blanco, Arostegui, J.J., Macia-Agullo, A., & Macias, F. (2009). Simulated geochemical weathering of a mineral ash-rich biochar in amodified Soxhlet reactor. Chemosphere, 80, 724–732. https://doi.org/10.1016/j.chemosphere.2010.05.026
  71. Yuan, J.H., Xu, R.K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488-3497. https://doi.org/10.1016/j.biortech.2010.11.018
  72. Zahoor, R., Dong, H., Abid, M., Zhao, W., Wang, Y., & Zhou, Z. (2017). Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environmental and Experimental Botany, 137, 73-83. https://doi.org/10.1016/j.envexpbot.2017.02.002
  73. Zhang, M., Fan, C.H., Li, Q.L., Li, B., Zhu, Y.Y., & Xiong, Z.Q. (2015). A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system. Agriculture, Ecosystems and Environment, 201, 43-50. https:// doi.org/10.1016/j.agee.2014.12.003
  74. Zhang, M., Riaz, M., Liu, B., Xia, H., El-Desouki, Z., & Jiang, C. (2020). Two-year study of biochar: Achieving excellent capability of potassium supply via alter clay mineral composition and potassium-dissolving bacteria activity. Science of the Total Environment, 717, 1-12. https://doi.org/10.1016/j.scitotenv.2020.137286
  75. Zolfi Bavariani, M., Ronaghi, A., Karimian, N., Ghasemi, W., & Yatharbi, J. (2015). The effect of biochar prepared from chicken manure at different temperatures on the chemical characteristics of a calcareous soil. Journal of Water and Soil Sciences, 20(75), 73-84. (In Persian with English abstract)

 

 

CAPTCHA Image