##plugins.themes.bootstrap3.article.main##

احمدرضا شیخ حسینی حسین شریعتمداری مهران شیروانی

چکیده

آلودگی منابع آب و خاک به فلزات سنگین از مهمترین چالش های پیش روی بشر است. جذب فلزات سنگین از محیط های آبی با استفاده از مواد جاذب ارزان قیمت یکی از روش های ارزان و کارآمد محسوب می شود. لیگاندهای مختلف دارای توانایی متفاوتی برای کمپلکس کردن فلزات سنگین هستند و بر جذب و سرنوشت آنها در محیط های آبی اثر چشمگیر و تعیین کننده ای دارند. سیترات و آرژنین از لیگاندهای مهم هستند که به طور طبیعی در خاک ها و ریزوسفر گیاهان یافت می شوند. در این مطالعه اثر لیگاندهای سیترات و آرژنین بر جذب نیکل توسط کانی های سپیولیت یزد و کلسیت بررسی شد. در حضور یا عدم حضور سیترات و آرژنین مدل لانگمویر جذب نیکل توسط سپیولیت را به خوبی توصیف نمود در حالی که جذب خطی بهترین توصیف برای جذب نیکل توسط کلسیت و حاکی از فیزیکی بودن مکانیسم جذب بود. سیترات مقدار و سرعت جذب نیکل توسط سپیولیت را کاهش داد. در مورد کلسیت سیترات بر ظرفیت جذب نیکل توسط کلسیت اثر چندانی نداشت اما سرعت جذب را افزایش داد. آرژنین موجب افزایش مقدار و سرعت جذب نیکل توسط دو کانی شد. سینتیک جذب نیکل توسط سپیولیت و کلسیت از مدل تابع توانی پیروی کرد. در حضور سیترات بعد از 6 ساعت واجذب نیکل توسط کانی کلسیت اتفاق افتاد. بنابراین حضور سیترات و آرژنین می تواند بر کارآیی سپیولیت و کلسیت برای حذف نیکل از محیط های آبی آلوده مؤثر باشد. آرژنین می تواند با افزایش جذب نیکل توانایی پالایندگی سپیولیت و کلسیت را افزایش دهد در حالی که سیترات بر سیستم کلسیت بی تأثیر بوده ولی در سیستم سپیولیت موجب کاهش جذب نیکل و در نتیجه کاهش کارآیی سیستم می شود.

جزئیات مقاله

مراجع
1- Bryce A.L., Kornicker W.A., and Elzerman A.W. 1994. Nickel adsorption to hydrous Ferric oxide in the presence of EDTA: Effects of component addition sequence. Environmental Science and Technology, 28: 2353-2359.
2- Collins C.R., Ragnnarsdottir K.V., and Sherman D.M. 1999. Effect of inorganic and organic ligands on the mechanism of cadmium sorption to goethite. Geochimica Et Cosmochimica Acta, 63: 2989-3002.
3- Duarte B., Delgado M., and Caçador I. 2007. The role of citric acid in cadmium and nickel uptake and translocation, in Halimione portulacoides. Chemosphere, 69: 836-840.
4- Jones D., Dennis P., Owen A., and Van Hees P. 2003. Organic acid behavior in soils–misconceptions and knowledge gaps. Plant Soil, 248: 31-41.
5- Kadir S., Baș H., and Karakaș Z. 2002. Origin of sepiolite and loughlinite in a neogene volcano-sedimentary lacustrine environment, Mihaliççik-Eskișehir, Turkey. The Canadian Mineralogist, 40: 1091-1102.
6- Kittrick J.A., and Hope E.W. 1963. A procedure for the particle size separation of soils for X-ray diffraction analysis. Soil Science, 96: 312-325.
7- Lackovic K., and Angove M. J. 2004. Modelling the adsorption of Cd (II) onto goethite in the presence of Citric acid. Journal of Colloid Interface Science, 269: 37-45.
8- Limousin G., and Gaudet J-P. 2007. Sorption isotherms: A review on physical bases, modeling and measurement. Applied Geochemistry, 22: 249-275.
9- Makarova O.V., and Rajh T. 2000. Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environmental Science and Technology, 34: 4797-4803.
10- Mc Dowell R., and Sharpley A. 2003. Phosphorus solubility and release kinetics as a function of soil test P concentration. Geoderma, 112: 143-154.
11- Morse J.W., and Mackenzie F.T. 1990. Geochemistry of sedimentary carbonates. Elsevier Science, New York.
12- Murray H.H. 2007. Applied clay mineralogy: occurrences, processing, and application of kaolins, bentonites, palygorskite-sepiolite, and common clays. Elsevier Science, New York.
13- Pokrovsky O., and Schott J. 2002. Surface chemistry and dissolution kinetics of divalent metal carbonates. Environmental Science and Technology, 36, 426-432.
14- Poulsen I.F., and Bruun Hansen H.C. 2000. Soil sorption of nickel in presence of citrate or arginine. Water, Air, and Soil Pollution, 120: 249-259.
15- Rhoads J.W. 1982. Cation exchange capacity. p. 149-158. In: A.L. Page et al. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
16- Ryan P., Delhaize E., and Jones D. 2001. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Biology, 52: 527-560.
17- Schwab A., Zhu D., and Banks M. 2008. Influence of organic acids on the transport of heavy metals in soil. Chemosphere, 72: 986-994.
18- Serrano S. F., Garrido C.G.C., and Garcia-Gonzalez M.T. 2005. Competitive sorption of cadmium and lead in acid soils of central Spain. Geoderma, 124: 91-104.
19- Shirvani M., Shariatmadari H., Kalbasi M., Nourbakhsh F., and Najafi B. 2006. Sorption of cadmium on palygorskite, sepiolite and calcite: Equilibria and organic ligand affected kinetics. Colloids and Surfaces A: Physicochem. Eng. Aspects. 287: 182-190.
20- Shirvani M., Shariatmadari H., and Kalbasi M. 2007. Kinetics of cadmium desorption from fibrous silicate clay minerals: Influence of organic ligands and aging. Applied Clay Science, 37: 175-184.
21- Sparks D.L. 2003. Environmental Soil Chemistry. Elsevier Science, USA.
22- Stadler M., and Schindler P.W. 1993. The effect of dissolved ligands upon the sorption of Cu (II) by Ca-montmorillonite. Clays Clay Miner, 41: 680-692.
23- Strobel Bjarne W. 2001. Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma, 99: 169-198.
24- Xu R., and Ji G. 2003. Effect of anions of low molecular weight organic acids on adsorption and desorption of aluminum by and from a kaolinite at different pH. Soil Science, 168: 39-44.
25- Xu R., Li C., and Ji G. 2004. Effect of low-molecular-weight organic anions on electrokinetic properties of variable charge soils. Journal of Colloid Interface Science, 277: 243-247.
26- Yamauchi O., and Odani A. 1996. Stability constants of metal complexes of amino acids with charged side chains--Part I: Positively charged side chains (Technical Report). Pure and Applied Chemistry, 68: 469-496.
ارجاع به مقاله
شیخ حسینیا., شریعتمداریح., & شیروانیم. (2016). اثر سیترات و آرژنین بر جذب نیکل توسط کانی های سپیولیت یزد و کلسیت. آب و خاک, 30(6), 1930-1940. https://doi.org/10.22067/jsw.v30i6.27813
نوع مقاله
علمی - پژوهشی