پهنه‌بندی pH آب‌های زیرزمینی و تعیین مناطق حساس برای رشد مرکبات و برنج در مازندران

نوع مقاله : مقالات پژوهشی

نویسندگان

گروه مهندسی آب، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران.

چکیده

استان مازندران یکی از مهم‌ترین مناطق در زمینه‌ی تولید برنج و مرکبات در ایران است که بخشی از باغ‌ها و مزارع کشاورزی آن با آب‌های زیرزمینی آبیاری می‌شوند. با توجه به این امر که pH آب آبیاری تأثیر مهمی در عملکرد محصولات کشاورزی دارد، در این تحقیق، pH آب‌های زیرزمینی 300 حلقه چاه مربوط به شرکت آب منطقه­ای استان مازندران، به صورت مکانی و زمانی در نوار ساحلی استان مازندران به مساحت 8252 کیلومترمربع از ابتدای سال 1391 تا پایان سال 1399، با استفاده از نرم­افزار ArcGIS 10.7.1 با روش کریجینگ معمولی (OK) براساس میانگین pH در دوره‌ها­ی شش­ماهه پهنه­بندی ­شد. برای شناسایی مناطق با خطرپذیری بیشتر از روش کریجینگ شاخص (IK) استفاده شد. نتایج نشان داد که بهترین نیم‌تغییرنما برای پارامتر pH مدل Stable و Exponential است. طبقه‌بندی کلاس‌ها در روش OK براساس حساسیت مرکبات و برنج تعریف شد. نتایج نشان داد که در روش OK، میانگین درصد مساحت تحت کلاس‌های طبقه‌بندی pHهای 8/5>، 2/6-8/5، 8-2/6 و 8< به‌ترتیب برابر با صفر، 6/0، 5/83 و 9/15 درصد و در روش IK، میانگین درصد مساحت تحت کلاس‌های طبقه‌بندی با احتمال خطر آسیب‌پذیری 20-0، 40-20، 60-40 و 100-60 درصد به‌ترتیب برابر با 9/94، 8/4، 3/0 و صفر درصد بود. نقشه‌های حاصل از روش OK نشان دادند که در هیچ منطقه‌ای pH آب زیرزمینی اسیدی نیست و در کناره‌های غربی و شرقی استان شرایط قلیایی مشاهده شد. نقشه­های حاصل از روش IK نشان دادند که در اکثر مناطق استان مازندران احتمال خطر آسیب‌پذیری براساس pH آب‌های زیرزمینی برای باغ‌های مرکبات و مزارع برنج منطقه مورد مطالعه، در محدوده‌ی 20-0 درصد قرار دارد و در بخشی‌های بسیار کمی در قسمت­های شرقی استان احتمال خطر به 40-20 درصد می‌رسد. با توجه به آسیب‌پذیری مرکبات و گیاه برنج درpHهای بالا در آب آبیاری، توصیه می‌شود که در دو محدوده‌ی غربی و شرقی استان برای رشد بهتر گیاه برنج و عدم آسیب‌پذیری محصول به دلیل کمبود نیتروژن و فسفر، با انجام تحقیقات مزرعه‌ای کودهای حاوی عناصر مذکور به مزارع افزوده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mapping pH of Groundwater and Determination of Vulnerability Areas for Citrus and Rice Growth in Mazandaran

نویسندگان [English]

  • Ramin Fazloula
  • Hedyeh Pouryazdankhah
Dept. of Water Engineering, Agricultural Eng. College, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.
چکیده [English]

Introduction
Mazandaran province is one of the most important rice and citrus-producing areas in Iran, where most of the citrus orchards and agricultural fields are irrigated with groundwater. On the other hand, irrigation water pH is one of the basic qualitative factors that determine the solubility and biological availability of chemical components in the soil such as nutrients and heavy metals, and it can affect agricultural production.
Materials and Methods
The coastal strip of Mazandaran Province toward the southwest of the Caspian Sea is situated in the north of Iran with an area of 8,252 km2 between 35.77 to 36.99 N latitudes and 50.36 to 57.13 E longitudes. In this study, the temporal and spatial variations of groundwater salinity were studied in the coastal strip using data from 300 wells, collected by Mazandaran Regional Water Company. Data included mean pH for each 6-month period of 9 consecutive years, from 2012 until the end of 2020. pH maps and maps of the risk probability area for rice and citrus growth were obtained by using Ordinary Kriging (OK) and Indicator Kriging (IK) in ArcGIS 10.7.1 software, respectively. Classifications were selected according to the properties pH range for the growth of citrus (5.8, 8) and the optimum pH for rice (6.8) in OK method. The indicator amount of pH was considered equal to 6.8 in IK method. Thereby, areas belonging to different pH classes were outlined and places with the risk probability for growing the rice and citrus were identified.
Results and Discussion
The 11 different models for semivariograms were drawn, and the best one was chosen according to the lowest nugget-to-sill ratio, and thus Stable and Exponential were obtained as the highest frequency for first and second half-years. The indices of cross validation for each selected semivariogram were estimated within acceptable ranges. In Ik method, the pH of studying area was classified into 4 ranges of <5.8, 5.8–6.8, 6.8–8.0, >8, and the percentage area of each classification derived from the ArcGIS software, the average area of each classification during the studying period was calculated zero, 0.6, 83.5 and 15.9 percent, respectively. It showed that most part of the study area located in the range of 6.8-8. It means most rice fields and citrus orchards were irrigated by the groundwater with the pH close to neutral. The obtained maps in the OK method indicated that the pH of the groundwater was not acidic in any points and alkaline conditions were observed in the western and eastern parts of the province. Therefore, The IK method was used to further investigate and determine the vulnerable areas. The probability of pH risk in rice and citrus growth was classified into 4 ranges (0-20%, 20-40%, 40-60% and 60-100%), and the average percentage area of each classification along the period was estimated 94.9, 4.8, 0.3 and zero percent, respectively. Using the IK method, higher probability of groundwater pH reducing the yield in citrus orchards and rice fields was found in eastern parts of Mazandaran province, which was about 5% of total studying area. Also, the results of the study in these 9 consecutive years did not show any decreasing or increasing trend in pH changes and consequently the area under each classification.
Conclusion
Generally, the results indicated that the pH of groundwater for irrigating the citrus orchards and rice fields was appropriate in the most parts of the province and merely in the eastern part of the province, low water alkalinity may make a risk probability for rice and citrus growth in both western and eastern parts of the province. Due to the fact that alkaline water causes soil alkalinity and consequently reduces the solubility of phosphorus and some other plant nutrients in soil, it is suggested to supply the optimum required fertilization amounts of the nutrients in soil. However, the amount of fertilization should be on the basis of field research results. It is also proposed to study the condition of rice and citrus growth and the irrigated water in more details through the farms of western parts of the province. Due to the fact that most citrus orchards in this province are irrigated under the pressurized irrigation systems and using groundwater for irrigation, it is suggested that the Langelier Saturation Index (LSI) be examined in future research.

کلیدواژه‌ها [English]

  • Caspian coastal strip
  • Indicator Kriging
  • Mazandaran province
  • Ordinary Kriging
  • pH
  1. Amiri-Bourkhani, M., Khaledian, M.R., Ashrafzadeh, A., & Shahnazari, A. (2017). The temporal and spatial variations in groundwater salinity in Mazandaran Plain, Iran, during a long-term period of 26 years. Geofizika 34(1): 119-139. https://doi.org/10.15233/gfz.2017.34.4.
  2. Asghari, F.B., Mohammadi, A.A., Dehghani, M.H., & Yousefi, M. (2018). Data on assessment of groundwater quality with application of ArcGIS in Zanjan, Iran. Data in Brief 18: 375. https://doi.org/10.1016/j.dib.2018.03.059.
  3. Belkhiri, L., Mouni, L., Sheikhy Narany, T., & Tiri, A. (2017). Evaluation of potential health risk of heavy metals in groundwater using the integration of indicator kriging and multivariate statistical methods. Groundwater for Sustainable Development 4: 12–22. https://doi.org/10.1016/j.gsd.2016.10.003.
  4. Bhunia, G.S., Keshavarzi, A., Shit, P.K., Omran, E.S.E., & Bagherzadeh, A. (2018). Evaluation of groundwater quality and its suitability for drinking and irrigation using GIS and geostatistics techniques in semiarid region of Neyshabur, Iran. Applied Water Science 8(6): 1-16. https://doi.org/1007/s13201-018-0795-6.
  5. Cambardella, C.A., Moorman, T.B., Parkin, T.B., Karlen, D.L., Novak, J.M., Turco, R.F., & Konopka, A.E. (1994). Field- scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal 58(5): 1501. https://doi.org/10.2136/sssaj1994.03615995005800050033x.
  6. Chandra, N.A., & Sahoo, S.N. (2020). Indicator kriging approach using a GIS to classify groundwater quality parameters of east Godavari District. Andhra Pradesh, India. In III Indian National Groundwater Conference on Groundwater Resources Management for Sustainable Development: Special Emphasis on Coastal and Urban Environment, CWRDM, Kozhikode, 18-20 February 2020. (http://hd1.handle.net/2080/3512).
  7. Chatterjee, R., Tarafder, G., & Paul, S. (2010). Groundwater quality assessment of Dhanbad district, Jharkhand, India. Bulletin of Engineering geology and the Environment 69(1): 137-141. https://doi.org/1007/s10064-009-0234-x.
  8. Chica-Olmo, M., Luque-Espinar, J.A., Rodriguez-Galiano, V., Pardo-Igúzquiza, E., & Chica-Rivas, L. (2014). Categorical indicator kriging for assessing the risk of groundwater nitrate pollution: the case of Vega de Granada aquifer (SE Spain). Science of the Total Environment 470–471: 229–239. https://doi.org/10.1016/j.scitotenv.2013.09.077.
  9. Delbari, M., Amiri, M., & Motlagh, M.B. (2016). Assessing groundwater quality for irrigation using indicator kriging method. Applied Water Science 6(4): 371–381. https://doi. org/10.1007/s13201-014-0230-6.
  10. Emery, X. (2006). Ordinary multigaussian kriging for mapping conditional probabilities of soil properties. Geoderma 132(1–2): 75–88. https://doi.org/10.1016/J.GEODERMA.2005.04.019.
  11. (2018). Food and Agriculture Organization rice market monitor (RMM). Available at http://www.fao.org/economic/est/publications/ricepublications/rice-market-monitor-rmm/en/ (visited 27 April 2022).
  12. Ghadami Firouzabadi, A. (2015). The water use management and soil changes by full irrigation and partial rootzone drying (PRD) in sunflower. Ph.D. Thesis, Sari Agricultural Sciences and Natural Resources University, Sari, Iran: 174p. (In Persian with English abstract).
  13. Ghimire, L., Kadyampakeni, D., & Vashisth, T. (2020). Effect of Irrigation Water pH on the Performance of Healthy and Huanglongbing-affected Citrus. Journal of the American Society for Horticultural Science 145(5): 318-327. https://doi.org/10.21273/JASHS04925-20.
  14. Goovaerts, P., Webster R., & Dubois, J.P. (1997). Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics. Environmental and Ecological Statistics 4(1): 49–64. https://doi.org/10.1023/A:1018505924603.
  15. Grace, M.S. (2020). A Geospatial Analysis of Ground Water Quality Mapping using GIS in Sangareddy District. International Journal of Engineering Research and Technology (IJERT) 9: 1150-1153. https://doi.org/17577/IJERTV9IS070508.
  16. Gunarathna, M.H.J.P., Kumari, M.K.N., & Nirmanee, K.G.S. (2016). Evaluation of interpolation methods for mapping pH of groundwater. International Journal of Latest Technology in Engineering, Management and Applied Science 3: 1-5.
  17. Hamraz, B., Shahidi, A., & Khashei Saiyuki, A. (2019). Qualitative assessment of Birjand plain aquifer for pressurized irrigation by using geostatistic Indicator Kriging method. Iranian Journal of Irrigation and Drainage 13(1): 34-44. (In Persian with English abstract)
  18. Honma, T., Ohba, H., Kaneko-Kadokura, A., Makino, T., Nakamura, K., & Katou, H. (2016). Optimal soil Eh, pH, and water management for simultaneously minimizing arsenic and cadmium concentrations in rice grains. Environmental Science and Technology 50(8): 4178-4185. https://doi.org/10.1021/acs.est.5b05424.
  19. Hosseini, S.S., & Rafiei, H. (2008). Investigation of citrus market behavior in Mazandaran province, case study of Sari. Agricultural Economics 2(4): 73-92. (In Persian with English abstract)
  20. (2021). 10 million cubic meters are extracted annually from illegal wells in Mazandaran. The Islamic Republic News Agency, News Cod: 84206632, Reporter Code: 1045, date: 2021.02.01. available at https://www.irna.ir/news/84206632 (visited 14 May 2022). (In Persian)
  21. Johnston, K., Ver Hoef, J.M., Krivoruchko, K., & Lucas, N. (2001). Using ArcGIS geostatistical analyst 380. Esri Redlands: 273p.
  22. Karandish, F., & Shahnazari, A. (2014). Appraisal of the geostatistical methods to estimate Mazandaran coastal ground water quality. Caspian Journal of Environmental Sciences 12(1): 129-146.
  23. Kharad, S.M., Rao, K.S., & Rao, G.S. (2010). GIS based groundwater assessment model, GIS@development, Nov–Dec 1999. https://doi.org/5897/AJEST11.134.
  24. Kumari, M.K.N., Sakai, K., Kimura, S., Yuge, K., & Gunarathna, M.H.J.P. (2019). Classification of groundwater suitability for irrigation in the Ulagalla tank Cascade landscape by GIS and the analytic hierarchy process. Agronomy 9(7): 351. https://doi.org/10.3390/agronomy9070351.
  25. Lee, J.J., Jang, C.S., Wang, S.W., & Liu, C.W. (2007). Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model. Science of the Total Environment 384(1–3): 151–162. https://doi.org/10.1016/j.scitotenv.2007.06.021.
  26. Omrani, S.J., Almasian, M., Poshtekohi, M., & Asa′di, R. (2003). Geological Atlas (National Atlas of Iran). National Cartographic Center (Plan and Budget Organization): 110p. (In Persian)
  27. Mishra, U., Lal, R., Slater, B., Calhoun, F., Liu, D., & Van Meirvenne, M. (2009). Predicting soil organic carbon stock using profile depth distribution functions and ordinary kriging. Soil Science Society of America Journal 73(2): 614–621. http://doi.org/10.2136/sssaj2007.0410.
  28. Mohammadi, E., Rostami Ravary, A., & Fararouie, A. (2021). Salinity assessment and ground water quality mapping using principle component analysis, Case study: Khafr plain. Water Resources Engineering. (In Persian with English abstract)
  29. Piccini, C., Marchetti, A., Farina, R., & Francaviglia, R. (2012). Application of indicator kriging to evaluate the probability of exceeding nitrate contamination thresholds. International Journal of Environmental Research 6(4): 853–862. https://doi.org/10.22059/ijer.2012.556.
  30. Pouryazdankhah, H., Shahnazari, A., Ahmadi, M.Z., Khaledian, M., & Andersen, M.N. (2019). Rice yield estimation based on forecasting the future condition of groundwater salinity in the Caspian coastal strip of Guilan Province, Iran. Environmental Monitoring and Assessment 191(8): 1-16. https://doi.org/10.1007/s10661-019-7613-y.
  31. Shabani, M. (2009). Determination of most sutible geostatistical method for the pH and TDS mapping of groundwater resources (Case study: The Arsanjan plain). Water Engineering 1(1): 47-57 (In Persian with English abstract)
  32. Sheikhy Narany, T., Firuz Ramli, M., Zaharin Aris, A., Azmin Sulaiman, W.N., & Fakharian, K. (2013). Spatial assessment of groundwater quality monitoring wells using indicator kriging and risk mapping, Amol-Babol Plain, Iran. Water 6(1): 68-85. https://doi.org/10.3390/w6010068.
  33. Shit, P.K., Bhunia, G.S., & Maiti, R. (2016). Spatial analysis of soil properties using GIS based geostatistics models. Modeling Earth Systems and Environment 2(2): 1-6. http://dx.doi.org/10.1007/s40808-016-0160-4.
  34. Statistical Center of Iran. (2011). Selected findings of the 2011 national population and housing census. Available at amar.org.irde/.
  35. Todd, D.K., & Mays, L.W. (2004). Groundwater hydrology. John Wiley & Sons.
  36. van Asten, P.J., Van Bodegom, P.M., Mulder, L.M., & Kropff, M.J. (2005). Effect of straw application on rice yields and nutrient availability on an alkaline and a pH-neutral soil in a Sahelian irrigation scheme. Nutrient Cycling in Agroecosystems 72(3): 255-266. http://doi.org/10.1007/s10705-005-3108-z.
  37. Yasrebi, J., Saffari, M., Fathi, H., Karimian, N., Moazallahi, M., & Gazni, R. (2009). Evaluation and comparison of ordinary kriging and inverse distance weighting methods for prediction of spatial variability of some soil chemical parameters. Research Journal of Biological Sciences 4(1): 93–102. https://medwelljournals.com/abstract/?doi=rjbsci.2009.93.102.
  38. Yousefian, M., Soltani, A., Dastan, S., & Ajamnoroozi, H. (2019). Documenting production process and the ranking factors causing yield gap in rice fields in Sari, Iran. Iran Agricultural Research 38(1): 101-109. https://doi.org/10.22099/iar.2019.5316.
  39. Ziogas, V., Tanou, G., Morianou, G., & Kourgialas, N. (2021). Drought and salinity in citriculture: optimal practices to alleviate salinity and water stress. Agronomy 11(7): 1283. https://doi.org/10.3390/agronomy11071283.

 

CAPTCHA Image