M. Yektafar; M. Zare; M. Akhavan Ghalibaf; S. R. Mahdavi Ardakani
Abstract
Introduction: Desertification, is a complex phenomenon, which as environmental, socio-economical, and cultural impacts on natural resources. According to the United Nations Convention to Combat Desertification defination, desertification is land degradation in arid, semi-arid, and dry sub-humid regions, ...
Read More
Introduction: Desertification, is a complex phenomenon, which as environmental, socio-economical, and cultural impacts on natural resources. According to the United Nations Convention to Combat Desertification defination, desertification is land degradation in arid, semi-arid, and dry sub-humid regions, resulting from climate change and human activities. Because of limiting access to qualified water resources in arid lands, it is necessary to use, all forms of acceptable water resources such as wastewater. Since irrigation with sewages has most effects on soil, in this research, desertification intensity of lands irrigated with sewages and natural lands of the area, where located near Yazd city, has been analyzed considering soil criterion of the Iranian Model for Desertification Potential Assessment (IMDPA). Several studies have done in Iran and in the world in order to provide national, regional or global desertification assessment models. A significant feature of the IMDPA is easily defining and measuring criteria, indicators, and ability of the model to use geometric means for the criteria and indicators.
Materials and Methods: In first step, In first step, in a random method, soil samples were taken in each of the defined land units with considering of the size of area. Next, all indices related to the soil criterion such as soil texture index, soil deep gravel percentage, soil depth, and soil electrical conductivity were evaluated in each land use (both irrigated lands and natural lands) and weighted considering the present conditions of the lands. Each index was scored according to the standard table of soil that categorized desertification. Then, geometry average of all indices were calculated and map of the desertification intensity of the study area were prepared. Thus, four maps were prepared according to each index. These maps were used to study both quality and effect of each index on desertification. Finally, these maps were integrated to prepare the final map that shows current status of desertification in the region by calculating geometric mean of all indices based on following formula:
QS = [EC * STI * SDI* SGI]1/4
Where:
QS: Soil criteria score; EC: Electrical Conductivity index; STI: Soil texture index; SDI: Soil depth index and SGI: Soil deep gravel percentage index.
Integrating of thematic databases and spatial analyst and mapping were done using ESRI Arc GIS v.10 software. Statistical analyses such as Mann-Whitney and t-statistic were done using SPSS v.21 software for comparing land irrigated with wastewater and natural land area.
Results and Discussion: Results show that in the land irrigated with wastewater, soil texture index with weighted average of 3.74 classified in severe desertification intensity class, and soil depth gravel percent, soil depth, and soil electrical conductivity indices with weighted average of 1.23, 1, and 1, respectively were classified in low desertification class. In general, soil criteria with weighted average of 1.21 classified in low desertification class. In natural lands of the area, soil depth gravel percent index (1) classified in low intensity class, soil depth index (3.06) grouped in severe class, and soil electrical conductivity (4) and soil texture (3.93) indices with were classified in very high desertification intensity classes.
Conclusion: In natural lands, soil criteria with weighted average of 2.89 classified in severe desertification class. General results show that in the lands irrigated with sewages, soils tissue index and in the natural lands, soil electrical conductivity index are the most effective indices in increasing of desertification intensity. Totally, soil criteria with the weighted average of 2.8, which are grouped in the very high desertification intensity class, are the main factors affecting desertification in total study area. Totally, soils tissue index is the most effective index of increasing in intensity of desertification in the total study area. However, the intensity of desertifcation in the land irrigated with wastewater is lower than the desrtification intensity in the natural lands of the study area, but this issue caused by losing of large amounts of good quality purified wastewater and converting of a large part of the area to wetland which can craates numerous environmental problems in the region in future. Finally, it can be concluded that the natural land of the study area, are not suitable for afforestation and agriculture in present condition, and if the land is irrigatted, salinity of the soil depths transferred up to the surface and can be cause some environmental problems in thi region.
F. Hazirei; Mohammad Zare Ernani
Abstract
Sand dunes movement is one of the critical processes of desertification. Mulching is one of the methods of sand movement control. Oil mulches have been used in Iran. Because of high cost and negative environmental impacts of oil mulches, changes in mulch type sand mulching methods is vital. Therefore, ...
Read More
Sand dunes movement is one of the critical processes of desertification. Mulching is one of the methods of sand movement control. Oil mulches have been used in Iran. Because of high cost and negative environmental impacts of oil mulches, changes in mulch type sand mulching methods is vital. Therefore, in this research different combinations of clay and lime were used as stabilizer. Sandy soil from the Yazd-Ardakan plain is used as bed treatment and clay particles (taken from Meybod area) were used as mulch in this research. The treatments were prepared using different ratios of the above mentioned materials. One liter of water was added to the each mulch combination and was sprinkled on the plot of 100 cm (length) × 30 cm (width) × 4 cm (height) sand. A completely randomized design is used as research plan with three repeating. Physical parameters, such as thickness, compressive strength, impact resistance and abrasion resistance which are created by mulches, and wind erodibility of the treatment were measured. The measured data were analyzed using SPSS software. Results show that the measured compressive strength, impact resistance and abrasion resistance of the clay–lime mulch is increase in the ratio of 200 gr clay and 10 gr lime in one liter of water.