A. Haghverdi; K. Mohammadi; S.A. Mohseni Movahed; B. Ghahraman; M. Afshar
Abstract
Abstract
Soil salinity within plant root zone is one of the most important problems that cause reduction in yield in agricultural lands. In this research, salinity in soil profile was simulated in Tabriz irrigation and drainage network using SaltMod and Artificial Neural Networks (ANNs) models. Based ...
Read More
Abstract
Soil salinity within plant root zone is one of the most important problems that cause reduction in yield in agricultural lands. In this research, salinity in soil profile was simulated in Tabriz irrigation and drainage network using SaltMod and Artificial Neural Networks (ANNs) models. Based on initial spatial distribution of salinity in soil profile, studying area was divided to 4 different soil and water groups and for two seasons in one year salinity was predicted. The SaltMod model was calibrated and then was applied to generate 2400 data sets for training ANN models. Some of the input data of SaltMod were used in ANN models including irrigation water depth, evapotranspiration, water table depth, rainfall, and initial soil salinity. Efficiency of genetic algorithm in training phase of ANNs was analyzed. The mean of correlation coefficient (R2) and root mean square error (RMSE) of estimated salinity in all groups was 0.8 and 0.032 respectively. In conclusion ANNs could perform well in simulation of soil salinity and it could be replaced SaltMod with enough accuracy. The results showed that overall performance of ANN models improve by applying genetic algorithm.
Keywords: Tabriz plain, Soil profile salinity, Genetic Algorithm, Artificial Neural Networks, SaltMod
A. Haghverdi; B. Ghahraman; A.A. Khoshnood Yazdi; Z. Arabi
Abstract
چکیده
ظرفیت زراعی و پژمردگی دائم مهمترین نقاط پتانسیلی در مدل سازی و مدیریت آب مورد نیاز محصولات کشاورزی می باشند. روش های مستقیم تعیین میزان رطوبت هزینه بر و گران می ...
Read More
چکیده
ظرفیت زراعی و پژمردگی دائم مهمترین نقاط پتانسیلی در مدل سازی و مدیریت آب مورد نیاز محصولات کشاورزی می باشند. روش های مستقیم تعیین میزان رطوبت هزینه بر و گران می باشد. بنابراین استفاده از توابع انتقالی برای تبدیل خصوصیات زودیافت خاک به خصوصیات هیدرولیکی یک راهکار مناسب برای حل این مشکل است. در این پژوهش کارایی مدل های شبکه عصبی مصنوعی (NNs) آموزش داده شده با نمونه های خاک منتج از جریان خروجی چند مرحله ای (NeuroMultistep outflow) و مدل های نزدیک ترین K همسایه (KNN) در اشتقاق توابع انتقالی به منظور تعیین میزان رطوبت در ظرفیت زراعی و پژمردگی دائم برای 122 نمونه خاک از شمال و شمال شرق ایران مورد بررسی قرار گرفت. همچنین تاثیر عوامل ورودی مختلف و نوع داده به کار رفته برای اشتقاق هر دو روش معین شد. نتایج حاصله نشان دادند که در کل روش KNN (027/0RMSE= ) نسبت به NNs (037/0RMSE= ) نتایج بهتری داشت. همچنین می توان گفت که حساسیت مدل های شبکه عصبی به کیفیت و نوع داده های به کار رفته برای آموزش بسیار بالاست و همگن نبودن داده ها باعث کاهش کارایی مدل های شبکه عصبی و افزایش 100 درصدی خطا می شود. همچنین نتایج نشان دادند که در نظر گرفتن خصوصیات هیدرولیکی به عنوان متغیرهای ورودی در شبکه عصبی باعث ارتقاء نتایج مدل سازی می شود.
واژه های کلیدی: نزدیک ترین K همسایه، شبکه های عصبی مصنوعی، توابع انتقالی، ظرفیت زراعی، پژمردگی دائم