Saeid Okhravi; Saeid Eslamian; nader fathianpour
Abstract
Introduction: Horizontal subsurface flow constructed wetlands have long been applied to improve water or wastewater quality. Previous studies on wetland systems have focused on trying to comprehend the processes leading to the removal of pollutants. Comparatively, there have been fewer studies dedicated ...
Read More
Introduction: Horizontal subsurface flow constructed wetlands have long been applied to improve water or wastewater quality. Previous studies on wetland systems have focused on trying to comprehend the processes leading to the removal of pollutants. Comparatively, there have been fewer studies dedicated to the assessment of flow distribution on hydraulic behavior through the wetland. Researchers declared the aspect ratio (length to width ratio), inlet-outlet configuration, the size of the porous media and the loading rate of constructed wetland could influence hydraulic retention time (HRT). Su et al. (2009) have stated that in free water surface constructed wetlands, when the aspect ratio is greater than 5, the hydraulic efficiency will reach 0.9, or even higher. If the project site or field area cannot meet the theoretical standard, the recommended aspect ratio is higher than 1.88 to ensure some hydraulic efficiency greater than 0.7. The present study was an attempt to analyse, with the aid of 3D numerical simulation and tracer study, how flow distribution affected hydraulic behavior by using 3 different input flow layouts.
Materials and Methods: The treatment system consisted of a horizontal subsurface flow in a constructed wetland having an aspect ratio of 6.5 and the bed slope of one percent. The geometry of this system, which was 4 m wide × 26 m long × 1 m deep, was planted with Phragmites australis. Inlet configurations were selected as a variable parameter. Three different inlet flow configurations including midpoint-midpoint (A), corner- midpoint (B) and uniform-midpoint (C), with the same fixed outlet configurations, were studied. The average flow discharge in each configuration was 6.58, 6.52 and 6.4 m3/day, respectively. Dye tracer was used to draw retention time distribution curves in each configuration for assessing the internal dispersion, short-circuiting and hydraulic parameters such as effective volume rate which is derived by division of mean retention time per nominal retention time. The 3D model presented, which was built on the Comsol Multiphysics platform, was implemented for fluid flow to show internal hydraulic patterns in the system. Hence, the hydraulic model used the Darcy equation to simulate a stationary water flow through the bed. The simulations were verified by using real data obtained from the existing constructed wetland. It was mostly used to show pressure throughout the system for each configuration of the inlet and the outlet.
Results and Discussion: The mean retention time for each configuration was found to be 4.53, 3.24 and 4.65 days, respectively. A marked reduction of the mean hydraulic retention time signified leaving tracer concentration from the outlet rapidly, high short-circuiting and dead volume and finally defective treatment process influenced by changing the inlet to the corner. According to tracer breakthrough curve, the effective volumes for configurations A and C were 87.5%, as compared to 62.1% for the configuration B. The two-day difference of tpeak between configurations 2 and 1, and 3 was probably due to the establishment of preferential streamlines resulting in short-circuiting and areas of dead volume in the system. The value of tpeakis related to dispersion, in the sense that a retention time distribution curve with a small peak time generally contains low dispersion. Simulation results showed the pressure difference from the inlet to the outlet ranged from 12-14, 14-15 and 10-13 cm H2O for A, B and C layouts, respectively. It was shown that the maximum pressure gradient occurred at the outset of the influent wastewater at the inlet, and it was gradually reduced to the lowest values at the outlet ports. Consequence of surface pressure demonstrated uniform pressure from inlet toward outlet at configuration C. Simulated streamlines approved this result, while range of high and low pressure area at configuration B was the most. There was a strong association between tracer experiments and simulation works. One of the major findings of this study was the significant shorter hydraulic mean retention time of the corner inlet setup. There are many that may cause these effects, although short-circuiting may be the primary one. A large low-pressure zone appeared at the opposite corner that was neither inlet nor outlet in this configuration.
Conclusions: This paper investigated the hydraulic performance and short-circuiting effects on water flow due to three different inlet patterns (i.e. midpoint, corner, and uniform) in horizontal subsurface flow wetlands based on dye tracer measurements and numerical modeling. The results showed that the uniform inlet could provide the highest hydraulic efficiency (i.e. longest hydraulic retention time, HRT), in comparison to other two setups. The performance of the three different layouts was also investigated in terms of hydraulic parameters. Short-circuiting was influenced by lower hydraulic retention time, leading to inadequate treatment. Uniform-midpoint and midpoint-midpoint yielded the best effective volume as compared to the corner-midpoint. It was demonstrated that these two cases increased dispersion and used the whole capacity of the constructed wetland for the treatment process. The most important result of this paper was the evaluation of internal hydraulic pattern thorough the wetland, something not investigated in previous research works. Based on the simulation results, the spatial pressure distribution in wetland cells was depicted. Finally, it can be concluded that the best configuration of inlet-outlet layout based on both numerical simulations and physical experiments is uniform-midpoint. Meanwhile, midpoint-midpoint is preferable to corner-corner by all performance criteria.
MohammadAmin Amini; Ghazaleh Torkan; Saeid Eslamian; Mohammad Javad Zareian; Ali Asghar Besalatpour
Abstract
Introduction: Understanding the concept of water balance is one of the most important prerequisites for sustainable management of water resources in the watersheds. Therefore, the components of water resources in a catchment system should be compared at different time periods, and also the effect of ...
Read More
Introduction: Understanding the concept of water balance is one of the most important prerequisites for sustainable management of water resources in the watersheds. Therefore, the components of water resources in a catchment system should be compared at different time periods, and also the effect of each of them should be identified on varied hydraulic components of the hydrological systems. The SWAT model is an example of a physically based hydrologic model which can be used for large-scale simulating and monitoring of water cycle processes based on the characteristics of the catchment area and its climatic conditions. The main object of this study is the hydrologic simulation and water balance estimation for the period 2000-2009 in the Zayandeh-Rud River Basin.
Materials and Methods: The Zayandeh-Rud River Basin is located in the arid and semi-arid central region of Iran. This area is very variable in terms of rainfall. As well as the state of water resources and water consumption is very complicated in this catchment. In the present study, the soil and water assessment tool (SWAT) used to simulate water balance in the Zayandeh-Rud River Basin. The input required data included digital elevation model, land use map, soil texture map and meteorological information including daily rainfall data and minimum and maximum temperature data were introduced to the model and the model was implemented with these data. The sensitivity of the flow-effective parameters was determined using the p-value and t-state criteria by the SUFI2 algorithm in the SWAT-CUP program. The model was calibrated monthly and validated with the selected parameters in the sensitivity analysis using the Nash-Sutcliff criteria and the coefficient of determination by the application of the data of six stations including. Calibration of the model was conducted for 2000-2006 and validation of the model for the years 2007-2009.
Results and Discussion: The results of sensitivity analysis showed that considering the characteristics of the study area, the SWAT model is more sensitive to the 17 effective parameters on runoff. The selected parameters also confirm the results of previous research carried out in the region. The sensitive parameters selected in the sensitivity analysis step were used to calibrate the model. In the next step, the parameters of SWAT-CUP software were entered. After that, these parameters were repeated 1000 times with the SUFI2 algorithm, and the optimal value for each parameter was determined. The Nash-Sutcliff coefficient and the coefficient of determination in the six hydrometric stations are greater than 0.56 and 0.69 in calibration and verification periods respectively, which indicates that the model has a satisfactory ability to run in runoff simulation. The contribution of the components of the water balance including evapotranspiration, surface runoff, lateral flow, groundwater flow, and deep aquifer recharge was calculated from annual basin precipitation. The amount of extracted water from the hydrological components indicated that the largest share of the water balance was related to actual evapotranspiration, the range of variations in the type of precipitation in the study area ranged from 60.1% (2000) to 92.7 % (2007). After evapotranspiration, surface runoff with a change of 22.2% (2005) to 8.6% (2009) and groundwater flow with a change of 14.2% (2000) to 20.5% (the year 2007) had relatively high fluctuations and a large share in the basin balance. These results indicate that the lateral flow with a range of 3.1 to 1.9% had no significant change in these years. Also, the deep aquifer recharge with the range of 1.2 to1.5% was the lowest in 2003 and 2009, respectively.
Conclusion: The results showed that the calibrated model for the Zayandeh-Rud River Basin had a desirable performance for both calibration and validation periods. Therefore, the SWAT model has acceptable performance for simulating the water balance of the area. In addition, the results of this study showed that 65.98% of the total annual precipitation in the basin is in form of evapotranspiration, which compares to the other water balance components has the highest part. As well as surface runoff with 15%, groundwater flow with 13.7%, lateral flow with 1.5%, and deep aquifer recharge with 0.8% have other parts of the water balance components in Zayandeh-Rud River Basin. The results also indicate that the highest water losses in the soil and groundwater resources of the basin are due to evapotranspiration. Therefore, serious measures to prevent the loss of water through evapotranspiration in the region to be necessary. The results of this research can be used to predict the effects of climate change and the applicable management practices in the region, which are presented in scenarios to the model.
Z. Dehghan; F. Fathian; S. Eslamian
Abstract
Introduction: According to the fifth International Panel on Climate Change (IPCC) report, increasing concentrations of CO2 and other greenhouse gases resulting from anthropogenic activities have led to fundamental changes on global climate over the course of the last century. The future global climate ...
Read More
Introduction: According to the fifth International Panel on Climate Change (IPCC) report, increasing concentrations of CO2 and other greenhouse gases resulting from anthropogenic activities have led to fundamental changes on global climate over the course of the last century. The future global climate will be characterized by uncertainty and change, and this will affect water resources and agricultural activities worldwide. To estimate future climate change resulting from the continuous increase of greenhouse gas concentration in the atmosphere, general circulation models (GCMs) are used. Resolution of the output of the GCM models is one of the problems of these models. Using downscaling tools to convert global large-scale data to climate data for the study area is essential. These techniques are used to convert the coarse spatial resolution of the GCMs output into a fine resolution, which may involve the generation of station data of a specific area using GCMs climatic output variables. The objectives of this study are, therefore, to investigate and evaluate the statistical downscaling approaches.
Materials and Methods: Different models and methods have been developed which the uncertainty and validation of results in each of them in the study area should be investigated to achieve the more real results in the future. In the present study, the performance of SDSM, IDW and LARS-WG models for downscaling of the temperature and precipitation data of Pars Abad synoptic station were compared and investigated. IDW technique is based on the functions of the inverse distances in which the weights are characterized by the inverse of the distance and normalized, so their aggregate equivalents one. SDSM is categorized as a hybrid model, which utilized a linear regression method and a stochastic weather generator. The GCM’s outputs (named as predictors) are used to a linearly condition local-scale weather generator parameters at single stations. LARS-WG is a stochastic weather generator and it is widely used for the climate change assessment. This model uses the observed daily weather data, to compute a set of parameters for probability distributions of weather variables, which are used to generate synthetic weather time series of arbitrary length by randomly selecting values from the appropriate distributions. In this study, data from the Pars Abad meteorological station, which was used as the data for the baseline period, was also used to predict climate variables. The record of data is 30 years (1971-2000), and the mean temperature and precipitation are 13.7 and 283 mm per year, respectively. The driest month is August, which receives less than 5 mm of rain. Most of the rainfall occurs in April, averaging at 47 mm. July is the warmest month of the year, with an average temperature of 28.9 oC, and January is the coldest, with an average temperature of -2.3 °C. Precipitation differs by 42.8 mm between the driest and wettest months of the year and the average temperature varies by 31.2 °C.
Results and Discussion: The calibration and validation results of the SDSM and LARS-WG models in the case of temperature showed that two models have better abilities for temperature simulation in comparison with precipitation data and, in all models, the increasing temperature was observed for most of the warm months. In the case of precipitation, the results of three models have considerable different towards each other and changes intensity of decreasing and increasing precipitation compared to the baseline in IDW model is higher and in LARS-WG model is lower than two other models. But, in case of calculated evapotranspiration, the results of SDSM and IDW models indicate the increasing evapotranspiration in the all months even modest and its maximum value is in last spring and summer. While, calculated evapotranspiration by using LARS-WG model has showed the lower estimation than the baseline period which implies the low ability of model to calculate this model. In general, scenario A2 resulted in more increases in temperature than B2 in each time period. Whereas, in the case of rainfall, the results for each time period were different. For ETo, in comparison to the baseline, both A2 and B2 scenarios showed an increase during both time periods.
Conclusion: In general, the results showed that all three models have similar and good performance for simulating and downscaling of temperature and precipitation data. Therefore, these three models can be adopted to study climate change impacts on natural phenomenon.