Soil science
Z. Khanmohammadi; A. Ahmadi
Abstract
Introduction
Iranian shallot, scientifically known as Allium hirtifolium Boiss. is a perennial plant of the Allium genus and native to Iran. The Allium genus has many antioxidant properties due to its being rich in organic compounds of sulfur and phenol. The shallot is used to treat rheumatic ...
Read More
Introduction
Iranian shallot, scientifically known as Allium hirtifolium Boiss. is a perennial plant of the Allium genus and native to Iran. The Allium genus has many antioxidant properties due to its being rich in organic compounds of sulfur and phenol. The shallot is used to treat rheumatic and inflammatory pains, soothe superficial wounds, treat some stomach diseases, be antispasmodic, and also as a spice and flavoring in some foods. Considering the health benefits of shallot and its application in the food industry, shallot corms are harvested from the natural resources in different stages of growth. Therefore, it is necessary to preserve the natural habitats of shallot and also supply the market demand for this plant. It appears that the cultivation of shallots within agricultural systems could serve as a significant strategy for meeting the demands of the expanding global market. Furthermore, shallots are known for their low water requirements, making their cultivation a focal point in Isfahan province in recent years. Additionally, this crop stands out as a high-income generator in the region. Despite its economic potential, there has been limited research into optimizing the growth conditions for this valuable plant. Hence, this study aimed to explore the impact of urea and cow compost on the yield of Iranian shallots in the Fereydun Shahr region, focusing on the uptake of nitrogen, phosphorus, potassium, and nitrates.
Materials and Methods
This research was carried out in the crop year of 1400-1401 in a field with an area of 300 square meters (32° 55' 53" N, 49° 56' 43" E) located in Fereydunshahr city of Isfahan province. The experiment was conducted according to a completely randomized design. Factorial arrangement of experimental treatments including two fertilization factors (urea and cow compost) was used. Plots with dimensions of 2 × 3 meters were created with a distance of 50 cm between the rows. The treatments were considered as urea fertilization at four levels (0, 120, 240 and, 360 kg ha-1) and cow compost treatment at three levels (0, 40 and, 60 tons ha-1). After plotting and applying cow compost treatments, shallot corms were planted at a depth of 10 to 15 cm in November 1400. Urea fertilizer treatment was applied in two stages, the first stage when the plant germinated (mid-April) and the second stage before flowering (second half of May). All treatments were applied in 3 replications. It should be noted that the treatments in this research are shown as 0-0 (control), 0-40, 0-60, 120-0, 120-40, 120-60, 240-0, 240-40, 240-60, 360-0, 360-40 and 360-60. The corms were harvested in June 1401 and the fresh and dry yield of the shallots was determined. The amount of nitrogen, phosphorus and, potassium in shallots was measured. Nitrate concentration was also measured in the harvested corms based on the Iranian national standard No. 4106. The nitrogen, phosphorus and, potassium uptake by shallots was obtained from the product of yield and the concentration of these elements. Results were analyzed using analysis of variance (ANOVA) procedure and the means were compared using the protected least significant difference (LSD) test at р < 0.05 probability level using SAS 9.3 software.
Results and Discussion
The results showed that the combined use of chemical fertilizer (urea) and cow compost has a significant effect on the shallot yield increment, as the highest yield was obtained in the combined treatment of urea fertilizer 240 (kg ha-1) and cow compost 40 (ton ha-1) application. Although the highest nitrogen concentration and uptake were observed in the treatment of 360 (kg ha-1) of urea along with 60 (ton ha-1) of cow compost, it was not significantly different from the treatment of 240-40 (the treatment with the highest yield). In general, the concentration of shallots nitrate was much lower than the permissible limit according to the national standard of Iran No. 16596. The highest nitrate concentration (24.63 mg kg-1 of fresh weight) was observed in the combined treatment of 120 (kg ha-1) of urea and 60 (ton ha-1) of cow compost application (120-60), which was significantly higher than other treatments. On the other hand, the concentration of shallots nitrate in the 240-40 treatment was significantly lower than the treatments of 360 kg of urea per hectare along with 40 or 60 (ton ha-1) of cow compost.
Conclusion
According to the results, to achieve the best yield, the most suitable level of urea application was 240 kg ha-1 and the best level of cow compost was 40 ton ha-1. It seems, utilization more amounts of urea or cow compost will only cause additional costs to the farmer and a waste of capital. Moreover, it can increase environmental pollution and nitrate concentration of product, which cause to quality decrement.
Soil science
Akbar Gandomkar; Zahra Khanmohammadi; M. Basirat
Abstract
Introduction
Quince with the scientific name "Cydonia oblonga Mill." is one of the most important horticultural products in the word including Iran. According to the average production from 1994 to 2020, Iran was the fourth largest quince producer in the world. Isfahan province is one of the most important ...
Read More
Introduction
Quince with the scientific name "Cydonia oblonga Mill." is one of the most important horticultural products in the word including Iran. According to the average production from 1994 to 2020, Iran was the fourth largest quince producer in the world. Isfahan province is one of the most important centers of high quality quince production with 2432 hectares of cultivated area and annual production of 25986 tons. Most of the quince orchards are located in the cities of Natanz and Isfahan. Plant nutrition as an important factor in growth, is a function of nutrients and environmental conditions interactions. Assessing the nutritional status of plants is based on precise determination of nutrients and appropriate application method to diagnosis and interpret the results. Various methods have been used to evaluate the nutritional status of the plant, such as the Critical Value Approach (CVA), the Deviation from Optimum Percentage (DOP), the Diagnosis and Recommendation Integrated System (DRIS) and the Compositional Nutrient Diagnosis (CND). The CND method expresses interactions by considering the ratio of one element to the geometric mean of all elements. Then high and low functional groups are separated, by using mathematical and statistical methods and application of cumulative function of the variance ratio of nutrients and the chi-square distribution function. Finally, CND nutrients norms and indices such balance index are calculated step by step. Therefore, considering the importance of the quince production in the country and the lack of sufficient knowledge to determine its nutritional status, the present study was conducted with the aim of investigating the nutritional status of quince trees using the CND method and determining the nutrients norms for this product.
Materials and Methods
In order to evaluate the nutritional status of quince trees using the CND method, 28 orchards were selected in the cities of Isfahan and Natanz. The orchards were selected such a way that they had different ranges of yield. The geographical location was recorded for each orchard. Then random and composite sampling of leaves was done from branches without fruit in July 2018. Concentration of nitrogen phosphorous, potassium, calcium, magnesium, iron, manganese, zinc, copper and boron was measured in quince leaves. At the end of season, the yield was determined for each orchard. The orchards divided into two groups based on high and low yields. The CND norms, CND nutritional index and nutritional balance index (r2) were computed based on steps of Parent and Dafir. The balance index of nutritional elements (r2) was calculated by Keith-Nilson method based on the Chi-square statistical distribution function (K2) in Excel software.
Results and Discussion
According to results of cumulative distribution function of nutrient variance and considering the yield of 23 tons per hectare as the intermediate yield, 25% of the studied orchards were in the high yield group and 75% of the orchards were in the low yield group. After solving the third– rank cumulative function equations of the studied nutrients, the highest yield was obtained for potassium Fci (VK) = 21.98 and the lowest value was for nitrogen Fci (VN) = 15.37. CND standard norms of nutrients and residual value were described as: V*N= 2.91, V*P= 1.39, V*K= 2.91, V*Ca= 2.13, V*Mg= 1.35, V*Fe= -2.01, V*Mn= -3.12, V*Zn= -3.97, V*Cu= -4.85, V*B= -3.51 and V*Rd= 6.78. The CND nutrient index revealed that potassium and nitrogen had the most negative index among macronutrients in the low-yield orchard group. The low amount of soil organic matter and the high presence of sand can contribute to the negative nitrogen index. Among the micronutrients, the iron index was negative in 67.7% of the low-yield orchards. Zinc and copper had the next highest nutritional requirements in most orchards. The presence of calcareous conditions in the soil of the studied orchards may be one of the reasons for this observation. The estimation of the nutritional balance index indicated that the r2 value in orchards with low yield was 60.3% higher than that in high-yield orchards.
Conclusion
CND nutritional balance index (r2), specially in orchards with low yield was more than zero (20.85), indicating nutritional imbalance in these orchards. Proper management and balanced application of chemical fertilizers should be considered. This can increase the yield and quality of quince production.