Irrigation
Seyed Abolghasem Haghayeghi Moghaddam; Fariborz Abbasi; Abolfazl Nasseri; Peyman Varjavand; Sayed Ebrahim Dehghanian; Mohammad Mehdi Ghasemi; Saloome Sepehri; Hassan Khosravi; Mohammad Karimi; Farzin Parchami-Araghi; Mustafa Goodarzi; Mokhtar Miranzadeh; Masoud Farzamnia; Afshin Uossef Gomrokchi; Moinedin Rezvani; Ramin Nikanfar; Seyed Hassan Mousavi fazl; Ali Ghadami Firouzabadi
Abstract
Introduction
The basic strategy to mitigate water crisis is to save agricultural water consumption by increasing productivity, which will result in more income for farmers and sustainable production. Due to the economic importance of barley production in the country, it is necessary to study the volume ...
Read More
Introduction
The basic strategy to mitigate water crisis is to save agricultural water consumption by increasing productivity, which will result in more income for farmers and sustainable production. Due to the economic importance of barley production in the country, it is necessary to study the volume of irrigation water and water productivity to produce this strategic product. Based on extensive field research on irrigation water management and application of different irrigation methods in barley farms, the innovations of this research were: a) measuring water consumed and determining water use efficiency in barley production, b) the up-to-date of the measurements and research findings, c) findings applicability for application in agricultural planning at the national and regional levels, d) the ability to development the findings in barley farms at the national level to improve water use efficiency. The hypotheses of this research are: a) barley irrigation water is various in different regions, b) water applied in barley farms is more than the required one, c) the water use efficiency of barley is different in the main production areas, and d) The applied water of barley is not the same in different irrigation methods. Therefore, the main objective of this study is to determine the water consumed and water use efficiency in barley production; to measure the water applied to barley farms in the main production areas; to compare the water measured in the production areas with the net irrigation requirement; and finally to determine water use efficiency of the barley in the main production areas in the Iran.
Materials and Methods
For this purpose, the volume of irrigation water and barley yield in 296 selected farms in 12 provinces (about 75% of the area under cultivation and production of barley in Iran) including Khuzestan, East Azerbaijan, Ardabil, North Khorasan, Fars, Khorasan Razavi, Tehran, Semnan, Markazi, Isfahan, Hamedan and Qazvin were measured directly. Farms in the mentioned provinces were selected to cover various factors such as irrigation method, level of ownership, proper distribution and quality of irrigation water. By carefully monitoring the irrigation program of selected farms during the growing season, the amount of irrigation water for barley during one year was measured. At the end of the season and after determining the average yield of barley during the 2020-2021 year, the values of irrigation water productivity and total water productivity (irrigation+effective rainfall) were determined in selected barley farms in each region. The volume of water supplied was compared with the gross irrigation requirements estimated by the Penman-Monteith method using meteorological data from the last ten years, and compared with the values of the National Water Document. Analysis of variance was used to investigate the possible differences in yield, irrigation water and water productivity in barley production.
Results and Discussion
To assess the reliability of statistical analysis, we evaluated the sufficiency of the number of measurements needed for both the quantity of irrigation water and the ley yield on the farms. Subsequently, we computed statistical indices, such as the mean and standard deviation. The results showed that the number of measurements of irrigation water and barley yield was to be 296 and 283, respectively, which was more than the number of measurements required for irrigation water (41 dataset) and yield (50 dataset). Therefore, the sufficiency of the data for the statistical analysis was reliable. The results showed that the difference in yield, volume of irrigation water and water productivity indices were significant in the mentioned provinces. The volume of barley irrigation water in the studied areas varied from 1900 to 9300 cubic meters per hectare and its average weight was 4875 cubic meters per hectare. The average barley yield in selected farms varied from 1630 to 7050 kg ha-1 and the average was 3985 kg ha-1. Irrigation water productivity in selected provinces ranged from 0.22 to 1.53 and its weight average was 0.90 kg m-3. Average gross irrigation water requirement in the study areas by the Penman-Monteith method using meteorological data of the last ten years and the national water document were 4710 and 4950 cubic meters per hectare, respectively. Irrigation efficiency of barley fields in the country is estimated at 62-65% without deficit irrigation.
Conclusion
In order to reduce water consumption and improve water productivity, it is suggested to manage water delivery to farms during the season and deliver water rights to them according to crops water requirements. To reduce water losses and enhance productivity in the barley farms, it is suggested the application of modern irrigation systems according to the farms conditions with the suitable operation; and modification and improvement of surface and traditional irrigation methods. Note that, water is only one of several necessary and effective inputs in the optimal and economic production of barley. On the other hand, attention should be paid to the optimal application of other inputs including: seeds, fertilizers, equipment and tools etc.