Soil science
Z. Barati; H.R. Owliaie; E. Adhami; M. Najafi-Ghiri
Abstract
IntroductionRecently, layered double hydroxides (LDHs) have attracted significant attention due to their variousapplications, particularly as slow release fertilizers for essential plant nutrients. Several studies have reported therelease of nitrate and phosphorus from LDHs. Additionally, micronutrients ...
Read More
IntroductionRecently, layered double hydroxides (LDHs) have attracted significant attention due to their variousapplications, particularly as slow release fertilizers for essential plant nutrients. Several studies have reported therelease of nitrate and phosphorus from LDHs. Additionally, micronutrients such as zinc (Zn), copper (Cu), andmanganese (Mn) can be structurally incor porated into the metal hydroxide layers. Recent research indicates thatLDHs have considerable potential for releasing these micronutrients. However, further studies are needed toenhance our understanding of the mechanisms and reactions of LDHs under diff erent conditions. Currently, thereis a lack of information regarding the divalent (M 2+2+) to trivalent cation (M 3+3+) ratios in LDHs and the influence ofmalic acid on the release of Zn, Mn, and magnesium (Mg) from these compounds. This study aimed toinvesti gate the effects of malic acid and the ratio of M 2+2+/M 3+ on the kinetics release of Zn, Mn and Mg from MgZn Mn Al LDH intercalated with nitrate nitrate.Materials and MethodsAll chemicals used in this study including malic acid (C4H6O5), KCl, Zn(NO3)2.6H2O, Mn(NO3)2.4H2O, Mg(NO3)2.6H2O and Al(NO3).9H2O were of analytical grades, purchased from Chem-Lab or Merck Chemical Corporations. The solutions were made with the decarbonated ultrapure water (electrical resistivity = 18 MΩcm). The LDHs were synthesized by co-precipitation method at constant pH=9.2-9.6. Two types of LDHs were synthesized with varying the M+2(Zn+Mn+Mg)/M+3(Al) 3:1 and 4:1 in the precursor solution while being stirred vigorously in a nitrogen atmosphere. The pH was kept at 9.2-9.6 by adding volumes of 3 M NaOH. The crystals of LDH were ripened in the mixture for 2 h and after that, the precipitates were centrifuged at 3000 rpm for 20 min and washed several times with distilled water and placed in an oven at 70 °C for 8 h to dry. The chemical composition of the synthesized LDHs was determined by furnace atomic absorption spectrophotometry (SavantAA, GBC) after acid digestion. The physical, chemical, and morphological characteristics of the LDHs were determined using X-ray diffraction analysis (Panalytical x Pert ProX-ray diffractometer), Fe-SEM (Sigma VP), FT-IR (Nicolet iS10 spectrometer), and BET (BELSORP Mini II) techniques. A batch study was done to determine the effect of different ratios of M2+/M3+ in LDHs and the effect of malic acid on release of Zn, Mn,and Mg from LDH (3:1) and LDH (4:1). Briefly, 0.01 g of synthesized LDH were put in a centrifuge tube mixed with 10 ml background electrolyte (KCl 0.01 M) and 1.25 mM malic acid in initial pH=6-7 and constant temperature (25±0.5 °C). Blank samples (without ligand) were also considered. Suspensions were shaken at periods ranging from 5 to 720 min agitation (180 rpm). Then, the supernatant solution was separated using a centrifuge at a speed of 4000 rpm for 20 min. Zn, Mn, and Mg concentrations in supernatants solutions were determined by graphite furnace atomic absorption spectrophotometry. The effect of pH in the range of 5 to 10 on the release of Zn, Mn, and Mg from LDH was also studied. Two equations (pseudo-second-order and Elovich) were used to fit the kinetics data.Results and DiscussionThe results showed that the calculated molar ratio of divalent cation to trivalent cation was similar to their molar ratio in the solution prepared for the synthesis of LDH samples. The X-ray diffraction patterns of LDH (3:1) and LDH (4:1) samples showed the existence of strong and sharp peaks for 003 and 006 plates. Accordingly, the reflections of the 003 and 006 plates revealed the layered structure of the synthesized LDH materials. Two bands of FT-IR spectrums around 3480 and 1620 cm-1 for all synthesized LDH materials designated stretching vibrations of the O-H group of hydroxide layers and the interlayer water molecules. The sharp characteristic band around 1382 cm−1 in LDH (3:1) and band around 1354 cm-1 in LDH (4:1) was attributed to the antisymmetric stretching mode of nitrate anion in LDH. The specific surface area of LDH (3:1) and LDH (4:1) were 5.50 m2g-1 and 16.54 m2g-1 respectively. The average pore diameters in LDH (3:1) and LDH (4:1) were 1.92 nm and 2.55 nm, respectively. Time-dependent cumulative release of Zn, Mn, and Mg from LDH (3:1) and LDH (4:1) in the presence and absence of malic acid was investigated. Time-dependent Zn, Mn, and Mg release from LDH (3:1) and LDH (4:1) was accelerated in the presence of malic acid. The Zn, Mn, and Mg release from the LDHs was likely to be separated into two stages. In the initial stage from 0 to 60 min, the release rate of Zn, Mn, and Mg was rapid, then either remained constant or slightly enhanced during 60–720 min. In this research, among the non-linear models used to determine the release kinetics of Zn, Mn, and Mg, the result with the highest R2 values was chosen. The R2 values were 0.91–0.99, 0.93–0.99, 0.93–0.99, 0.89-0.99, and 0.55–0.86 for pseudo-first-order, pseudo-second-order, Elovich, power function, and parabolic diffusion, respectively. So, pseudo-second-order and Elovich models were used to analyze kinetic data. The amounts of release of Zn, Mn and Mg were higher from LDH (4:1) than from LDH (3:1) because of greater specific surface area, volume, and pore diameter in LDH (4:1). A comparison of metal release versus time profiles exhibited that dissolution was greatly dependent on the pH.ConclusionTheresults of this research indicated that the release of Zn, Mn, and Mg from layered double hydroxides(LDHs) was influenced by factors such as time, ligand, solution pH, and the type of LDH. According to thekinetics models fitted to the experimental data, the release rate of Zn, Mn, and Mg from LDH (4:1) was higherthan that from LDH (3:1). In both types of LDH s , the presence of malic acid significantly increased both the rateand amount of Zn, Mn, and Mg release compared to the absence of malic acid. While this study demonstratedthat varying the ratios of divalent to trivalent cations can influence the amount and rate of Zn and Mn release,further greenhouse studies are required to confirm the effectiveness of LDH as a slow release fertilizer incalcareous soils.
Soil science
H.R. Owliaie; E. Adhami; M. Najafi Ghiri
Abstract
IntroductionGlobal observations have confirmed that in recent decades, forests have been converted into agricultural land at a swift pace; this is a major global concern. Forests around the world have also experienced severe disturbances due to other anthropogenic activities. The conversion of forests ...
Read More
IntroductionGlobal observations have confirmed that in recent decades, forests have been converted into agricultural land at a swift pace; this is a major global concern. Forests around the world have also experienced severe disturbances due to other anthropogenic activities. The conversion of forests to cropland often results in soil degradation. Slope gradient and land use change are known to influence soil quality; therefore, the assessment of soil quality is important in determining sustainable land-use and soil-management practices. Magnetic susceptibility (χlf) measurements are widely used to study soil-forming processes. Many efforts have been made to correlate soil magnetic susceptibility with different soil properties, such as topography, parent material, Fe oxide forms, etc. The Yasouj area of Kohgilouye Province is one of the most densely forested areas in Zagros mountainous region. Parts of the area have been cultivated to feed the growing population, which has led to forest degradation. The objectives of this study were to assess some soil properties focusing on soil χlf and Fe- oxides forms in different land uses and slope positions.Materials and Methods Forty soil samples were taken from dense forest, sparse forest, eroded lands and dryland farming from different slops (0-15 and 15-30 percent) in Mokhtar Plain, west of Yasouj city. Soil samples were taken from the depth of 0–15 cm in a completely randomized design with five replications. Soil moisture and temperature regimes in the study area are xeric and thermic, respectively. Particle size distribution was determined by the hydrometer method and soil organic matter, CaCO3 equivalent and bulk density were determined using standard procedures. Fe (Feo) were extracted by acid ammonium oxalate, using a single 4-h extraction at pH 3 in the dark. Total free iron (Fed) was extracted with the CBD method. The total Fe contents (Fet) in the soil samples were determined after extraction with 5 mol L-1 HNO3. Magnetic susceptibility of the soils was measured at low (0.46 kHz; χlf) and high (4.6 kHz; χhf) frequencies, respectively; using a Bartington MS2 dual-frequency sensor, with approximately 10 g of air-dry soil in polyethylene vials. The percentage of frequency-dependent magnetic susceptibility (χfd%) was calculated to study the size of magnetic crystals in soils and the abundance of pedogenic ferrimagnetic in SP-SSD (~0.03 μm) boundary.Results and DiscussionThe results of this study showed that the land use and slope positions were among the important factors affecting the change of soil properties in this area. Land use change along with the reduction of organic matter reduced the stability of aggregates and increased land erosion. This process caused the loss of clay particles and magnetic minerals and affected many soil properties. Organic matter as an important indicator of soil quality, showed a decrease of about 3 times as a result of land use change from dense forest to eroded lands following by an increase in bulk density and a decrease in soil permeability and other soil quality indicators. Long-term afforestation and agricultural activities on sloping lands changed the soil texture from a class of silty loam in the forest to a lighter class of silty loam in agricultural use. Soil magnetic susceptibility, which is a function of soil magnetic particles was greatly affected by land use change and to a lesser extent by slope position. Due to the fact that magnetic susceptibility is influenced by factors such as soil texture, drainage class, erosion conditions, magnetic mineral contents, soil evolution conditions, land use changes from forest to other uses had significant effects (about 2 times) on χlf. Significant decrease in the amount of calcium carbonate in low slope positions was another reason for the increase in magnetic susceptibility in these positions. According to the measured values of χfd (ranged from 1.9 to 7.2%), the magnetic particles of the soils had low to moderate amounts of superparamagnetic (SP) particles, which indicates the combined effect of pedogenic superparamagnetic ultrafine particles and lithogenic (inherited) magnetic particles in χlf of the soils. The effect of slope on Fe forms (Feo, Fed and Fet) has been significant (p < 0.01) in almost all land uses. Due to the relatively high correlation of χlf with some soil properties such as Fe forms, soil clay, the amount of diamagnetic compounds including calcium carbonate in the studied soils, it is possible to estimate the value of these soil properties using χlf, which is a quick and cost-effective approach. Overall, it seems that magnetic susceptibility could be applied successfully to estimate some soil properties in hilly regions of Zagros Mountains of southwestern Iran, especially for monitoring the consequences of land use changes. It should also be noted that any change in the use of the area should be defined in accordance with the potential of the land in the long term to prevent a reduction in soil quality.
Mehri Ahrarai; Hamidreza Owliaie; ebrahim adhami; Mehdi najafi Ghiri
Abstract
Introduction: Evaluation of the nutrient status in soil is important from the nutritional, environmental, and economical aspects. Potassium is an essential element for plant growth and is a dynamic ion in the soil system. Soil testing is a useful tool that can help to ensure the efficient use of applied ...
Read More
Introduction: Evaluation of the nutrient status in soil is important from the nutritional, environmental, and economical aspects. Potassium is an essential element for plant growth and is a dynamic ion in the soil system. Soil testing is a useful tool that can help to ensure the efficient use of applied plant nutrients. Soil tests measure the quantity of a nutrient element that is extracted from a soil by a particular chemical extracting solution. The measured quantity of extractable nutrient in soil is then used to predict the crop yield response to application of the nutrient as fertilizer, manure, or other amendments. Over the years, many different soil testing procedures and extracting solutions were evaluated in an effort to identify a method that provides the most reliable prediction of crop yield response to nutrient application. It was determined that some soil testing procedures are best suited for particular soil types and climatic regions, whereas other soil testing procedures are better suited for different soil types and climates. Olive is a strategic and economic product in Iran. Fars province is the second largest olive producer in Iran. There is no general information about K status in the soils and olive trees of the Fars province as well as no introduced appropriate K extractants for theses soils. Therefore, the objectives of this study were: i) evaluating potassium status of some soils of olive orchards of Fars province and ii) introducing appropriate k extractants for extracting available K in these soils.
Materials and Methods: Fars province, with an area of 122000 km2 is located in southern Iran. The elevation varies from 500 m to 4400 m above mean sea level. Based on the information regarding olive orchards of Fars province, 13 typical olive orchards were selected. 26 surface (0-30 cm) and subsurface (30-60 cm) soil samples were taken. Physiochemical properties of the soil samples were determined based on standard methods. Soil reaction, texture, electrical conductivity, calcium carbonate, organic carbon, and cation exchange capacity were identified. The 12 K extracting solutions were 1M NaCl, 2M NaCl, 0.01M CaCl2, Morgan, AB-DTPA, 1M NH4OAC, 0.25M NH4OAC, 1M NaOAC, 2M HCl, 0.1M HNO3, 1M HNO3, and 0.025M H2SO4. The K contents of leaf samples were determined in 1g of each sample. The samples were dried and then ashed in 450°C for 4 h. 2M HCl was used to digest the samples. Potassium in all the filtrated extracts were then analyzed using flame photometer.
Results and Discussion: The all soils were calcareous (average of 48.7 and 50.2% calcium carbonate equivalent in surface and subsurface, respectively) with pH in range of 7.05-7.8. The textural classes were loam, clay loam, and sandy loam. The results showed that the concentrations of K extracted varied widely with the used method, because each extractant remove different portions of K. Among the 12 tested methods, boiling 1 mol/L HNO3 extracted highest amount of K (mean 696.1 mg/kg and range of 203.3-1893 mg/kg) which extracted soluble, exchangeable, and non-exchangeable potassium forms due to its high concentration of H+ and 2mol/L HCl removed the lowest amount of K (mean 32.7 mg/kg and range of 2.6-148.5 mg/kg). Correlation coefficients between K extracted by 12 extractants were determined. The correlation between potassium extracted by all the chemical methods was positive and significant except for boiling 1M HNO3. Between all tested extractants, 0.25M NH4OAC and 1M NH4OAC had the highest correlation (p≤0.01, r= 0.999). The relationship between soil potassium and potassium concentration in olive leaves were evaluated. Maximum correlation between leaf K and extracted soil K were noticed in 2M NaCl, 0.25M NH4OAC, 1M NaOAC, and AB-DTPA (r=0.721, 0.718, 0.717, and 0.714, respectively) and the minimum correlation was noticed in 1M HNO3 (r= 0.661).
Conclusion: The concentrations of K extracted varied widely with applied method, because of desorbing different portions of K by each method, different concentrations of each extracting solution, and the different times of equilibration. On average, the quantity of extracted K by 12 methods were in the following order: boiling 1M HNO3> 1M NH4OAC> 0.25M NH4OAC> AB-DTPA> morgan> 0.1 HNO3> 0.025M H2SO4> 0.01M CaCl2> 1M NaCl> 1M NaOAC> 2M NaCl> 2M HCl. This study showed that 2M NaCl, 0.25M NH4OAC and 1M NaOAC would be suitable as soil testing methods for determining available K for olive in the soils of Fars province. These extractants were the best because of high correlation with plants potassium. In addition, advantages of these extractants are low cost and simplicity. As a recommendation, using of K fertilizers in most olive orchards of the province will improve quantity and quality of the yield.
Niloofar Sadri; Hamidreza Owliaie; Ebrahim Adhami; Mahdi Najafi
Abstract
Introduction: Potassium is an essential element for plant growth and exists as four forms in soils: soluble, exchangeable, non-exchangeable, and mineral. Soluble and exchangeable K are considered as readily available and non-exchangeable K as slowly available. Organic matters and acids play an important ...
Read More
Introduction: Potassium is an essential element for plant growth and exists as four forms in soils: soluble, exchangeable, non-exchangeable, and mineral. Soluble and exchangeable K are considered as readily available and non-exchangeable K as slowly available. Organic matters and acids play an important role in increasing the bioavailability of nutrients especially potassium in the soils. Organic acids are low-molecular weight CHO containing compounds which are found in all organisms and which are characterized by the possession of one or more carboxyl groups. Depending on the dissociation properties and number of these carboxylic groups, organic acids can carry varying negative charge, thereby allowing the complexation of metal cations in solution and the displacement of anions from the soil matrix.The ability of an organic acid to release K from soils depends on some factors such as: diffusion rate of the organic acid in soil, the diffusion capability of organic acid-element complexes, the contact time of the organic acid on a mineral surface, the ionization of the organic acid, the functional group of the organic acid and its position, and the chemical affinity between the organic acid and the mineral elements. This study was conducted in order to evaluate the effect of organic acids and vermicompost on transformation of K in some selected soils of Fars Province, southern Iran.
Materials and Methods: In this study, nine soils with enough diversity were selected from different parts of Fars Province. The experiment was done as a completely randomized design with three replications, consisting of three incubation times (5, 15 and 60 days) and four organic compounds (including 2% vermicompost, three acids of citric, malic and oxalic acid eachat a concentration of 250 mmolkg-1and one control). The samples were incubated at 50% of saturation moisture at 22°C. Routine physicochemical analyses and clay mineralogy were performed on soil samples. Soil reaction, texture, electrical conductivity, calcium carbonate, and gypsum were identified. Soluble, exchangeable, non-exchangeable and mineral potassium were measured. The amounts of K forms in each sample were determined. Total K was determined following digestion of soil (110°C) with 48 % HF and 6 M HCl. Water soluble K was measured in the saturated extract. Exchangeable K was extracted with 20 ml 1.0 M NH4OAc (pH 7.0) for 5 min. Nitric acid-extractable K was measured by extraction of a soil sample with boiling 1.0 M HNO3 for 1 h. Potassium was measured on all filtrated extracts by flame photometer. The content of clay minerals was determined semi-quantitatively, using peak areas on the diffractograms of ethylene glycol solvated specimens. Statistical analysis was accomplished using the SPSS 16.0 software and the comparison of mean values was done using the Duncan test at the 5% level of significance.
Results and Discussion: The amount of different forms of K including water soluble, exchangeable, HNO3-extractable, and mineral K are relatively high in the studied soils. Mineralogical analysis indicated that smectite, illite, palygorskite and chlorite were the major minerals in the clay fractions. The results also showed that exchangeable, non-exchangeable and total potassium were in the range of 166 to 378, 282 to 1694, and 2312 to 8437 mg/kg-1, respectively.Organic acids and vermicompostwere led toa significant increase in soluble K at all times compared to control and vermicompost treatment exhibited greater effect. These treatments also significantly increased exchangeable potassium compared to control. Significant differences between exchangeable potassium of organic acids and vermicompost treatments were not observed at 5 and 15 days, but significant differences were observed between treatments of mallic and oxalic acids at 60 days. Compared to the control, the non exchancheable K showed significant increase in all three organic acid treatments and vermicompost at 15 and 60 days.
Conclusion: Based on the results, while exchangeable and non-exchangeable (NEK) potassium showed a clear trend in treatments, solution potassium was first increased and then showed a decreasing trend due to the rapid changes in liquid phase compared to the solid phase. All treatments significantly increased soluble potassium in each 3 times. The greatest potassium increase associated with vermicompost. In general, oxalic acid> malic acid>vermicompost> citric acid, were increased exchangeable potassium, while the trend for NEK was in the order of oxalic acid> malic acid> citric acid>vermicompost, respectively. All treatments at all times (except for treatment 5 days of NEK), showed a significant increase in the exchange and NEK potassium compared to the control. The results also reflect the effect of the dominant soil clay mineral on transformation of exchangeable and NEK, so that the highest and lowest rate of increase was related to the soils with dominant palygorskite and illite, respectively. In general, it seems that the use of organic acids and organic matter leads to a rapid increase of potassium, which must be properly managed in the soils with high leaching. Due to the complexity of soil environment in terms of soil physical, chemical and biological aspects and the role of these factors on potassium transformation, repeating of this experiment in other soils is recommended.
N. Sadri; H.R. Owliaie; E. Adhami; M. Najafi Ghiri
Abstract
Introduction: The optimum and sustainable use of soil is only possible with a correct and complete understanding of its properties. Potassium (K+) is an essential element for plant growth and is a dynamic ion in the soil system and its importance in agriculture is well recognized. According to increasing ...
Read More
Introduction: The optimum and sustainable use of soil is only possible with a correct and complete understanding of its properties. Potassium (K+) is an essential element for plant growth and is a dynamic ion in the soil system and its importance in agriculture is well recognized. According to increasing order of plant availability, soil K exists in four forms: mineral (5000-25000 ppm), nonexchangeable (50-750 ppm), exchangeable (40-600 ppm), and solution (1-10 ppm). K cycling or transformations among the K forms in soils are dynamic. The objectives of the present research were to study the relationship between different forms of potassium and clay mineralogy as well as soil evolution of 14 surface soil samples from some selected locations of Fars Province.
Materials and methods: Fars provinces, with an area of 122000 km2 located in southern Iran. The elevation varies from 500 m to 4400 m above mean sea level. Mean annual precipitation ranges from about 350 mm to 850 mm. Mean annual temperature ranges from 10°C to 24°C. According to Soil Moisture and Temperature Regime Map of Iran, the soils comprise xeric, and ustic moisture regimes along with mesic, thermic and hyperthemic temperature regimes. Based on the previous soil survey maps of Fars province, 14 surface soil samples were collected. Routine physicochemical analyses and clay mineralogy were performed on soil samples. Soil reaction, texture, electrical conductivity, calcium carbonate, and gypsum were identified. Soluble potassium, exchangeable potassium, non exchangeable potassium, and mineral potassium were measured. The amounts of K forms in each sample were determined. Total K was determined following digestion (110°C) of soil with 48 % HF and 6 M HCl. Water soluble K was measured in the saturated extract. Exchangeable K was extracted with 20 ml 1.0 M NH4OAc (pH 7.0) for 5 min. Nitric acid-extractable K was measured by extraction of a soil sample with boiling 1.0 M HNO3 for 1 h. Potassium was measured on all filtrated extracts by flame photometer. The content of clay minerals was determined semi-quantitatively, using peak areas on the diffractograms of ethylene glycol solvated specimens.
Results and discussion: The soils are all calcareous (average of 43% calcium carbonate equivalent) with relatively high clay contents (average of 34 %). The different forms of K including water soluble, exchangeable, HNO3-extractable, and mineral K are also relatively high in the studied soils. Mineralogical analysis indicated that smectite, illite, palygorskite and chlorite, were the major minerals in the clay fractions. The results also showed that exchangeable, non-exchangeable and total potassium were in the range of 230 to 436, 282 to 1235, and 2312 to 9201 mg/kg-1, respectively. The soils categorized into three groups based on the soil evolution, clay mineralogy, and total potassium. Well developed soils (Alfisols), slightly developed soils (Aridsols and Inceptisols), and non developed soils (Entisols), were categorized in groups of1, 2, and3. Except for soluble K, maximum of the other potassium forms were observed in group 1. Moreover, there was a high correlation between allpotassium forms andillite content, except for soluble potassium. Mineralogical results revealed that smectite and illite were the major clay minerals in Alfisols resulting high amount of available potassium. The differences among the soil groups in terms of clay percentages may be the results of differences in parent material. K concentration is greater in soils with higher content of calcium carbonate and this is resulted in the greater leaching of K in these soils. This is in consistent with the finding of the other authors, who concluded that calcite and gypsum have a positive effect on the concentration of K in soil solution and leaching of this element from soil.
Conclusion: The results of the present study indicated that the arid and semiarid soils of southern Iran have a relatively high content of K pools. Exchangeable and HNO3-extractable K exist in equilibrium with each other, but the exchangeability of HNO3-extractable K is greater in soils dominated with illite and montmorrilonite than other soils dominated with chlorite and palygorskite. It found that calcium carbonate content had a negative effect on different soil K pools except for water soluble K. The relationship obtained in this study will be allowed determination of soil K pools from clay mineralogy and chemical and physical properties such as exchangeable K, clay content and calcium carbonate content.