Ali Ansori Savari; Majid Nabipour; Masoume Farzaneh
Abstract
Introduction
The high-water requirement of sugarcane in arid and semi-arid regions, coupled with a decrease in rainfall, has led to an increase in the use of drainage water for sustainable production management. It has been estimated that 20% of all cultivated land and 33% of irrigated agricultural land ...
Read More
Introduction
The high-water requirement of sugarcane in arid and semi-arid regions, coupled with a decrease in rainfall, has led to an increase in the use of drainage water for sustainable production management. It has been estimated that 20% of all cultivated land and 33% of irrigated agricultural land are affected by high salinity. Salinity stress poses two main threats to plants: ionic toxicity and osmotic stress. Ionic toxicity occurs when there is a significant buildup of Na+ in the leaves in a saline environment. This disrupts the balance of water and ions in plants, damages organelle structure, and inhibits plant growth, potentially leading to death. Some studies have shown that ion toxicity caused by Na+ can inflict more irreversible damage on plants than osmotic stress. Silicon application (Si) showed improved photosynthetic efficiency, growth, and yield compared to plants under salt stress. Previous studies have also shown that silicon treatments can increase salinity tolerance in various plants, including wheat, corn, rice, and canola. However, the extent of silicon-mediated benefits under salinity can vary greatly between species and is largely dependent on the plant's capacity for element uptake dictated by its genetic makeup. There is limited information regarding the use of drainage water in sugarcane irrigation management in arid and semi-arid regions, as well as the potential for improving salinity stress through silicon application. Therefore, this study was conducted to evaluate the effects of Si on two sugarcane varieties irrigated with salt water.
Materials and Methods
The pot experiment was conducted in a greenhouse with natural light at the agricultural site of Sugarcane Dehkhoda Company in Khuzestan Province, Iran, in 2021-2022. The temperature and humidity percentages are indicated in Figure 1. This study caried out as split-split plot design based on randomized Block design (RBD). The main plot factors included three levels of salinity: control of 1.4±0.2 dS.m-1 (S0) from the river water source, salinity stress of 4.1±0.2 dS.m-1 (S1), and salinity stress of 8.2±0.2 dS.m-1 (S2) from the drain water source, with a sub-factor of variety treatment (CP73-21 and CP69-1062). The silicon application timing was also considered as a sub-factor, with four levels: Si0, non-silicon application (Control); Si1, one month before salinity stress; Si2, during salinity stress; and Si3, (After 30 days of salt stress, silicon was applied). The sugarcane sprouts are grown in polyethylene pots 100 cm in height and 45 cm in width. Each pot contained 100 kg of soil. A total of 216 experimental units were used during the experiment. The experimental pots were filled with a mixture of field soil and sugarcane filter cake in a 3:1 ratio. The results of the chemical analysis of field soil and filter cake are presented in Table 2. The salt stress was applied 113 days after growing cuttings and continued until harvest.
Results and Discussion
The results of the first year showed that salt stress significantly reduced the height of the sugarcane stalk. Also, at the salinity stress levels of 4.1 and 8.2 dS/m, the SPAD index decreased by 22.3% and 27%, respectively. Additionally, leaf sheath moisture dropped by 6.4% and 11.8%, electrolyte leakage increased by 11% and 22.7%, and the photosynthesis rate decreased by 28% and 42% compared to the control treatment. The optimal time to apply silicone fertilizer was one month prior to the onset of stress, which resulted in a significant improvement in all studied traits at salinity stress levels of 1.4 dS/m (control) and 4.1 dS/m. Furthermore, the qualitative analysis of sugarcane syrup in the second year revealed a decrease in sucrose percentage (14.1% and 33.5%, respectively) and white sugar content (12.6% and 40.9%, respectively) at salinity stress levels of 4.1 and 8.2 dS/m. The photosynthesis rate of sugarcane leaves decreased by 28.3 to 41.8 percent under salt stress levels of 4.1 and 8.2 dS, respectively. The CP69-1062 variety exhibited a better response compared to the CP73-21 variety, showing relative superiority in all growth and physiological traits studied.
Conclusion
The results also indicated that the optimal time to apply silicon fertilizer to sugarcane plants was one month before the onset of stress, resulting in a significant improvement in all studied traits. The application of silicon fertilizer led to a 1 percent increase in sucrose, 3.7 percent increase in syrup purity, and 3 percent increase in white sugar yield compared to no application.
A. Gholami; A. Ansouri; H. Abbas dokht; A. Fallah Nosrat Abad
Abstract
Introduction: Sulfur is the key element for higher crops and plays an important role in the formation of proteins, vitamins, and enzymes. It is a constituent of amino acids such as cysteine and methionine, which act for the synthesis of other compounds containing reduced sulfur, such as chlorophyll and ...
Read More
Introduction: Sulfur is the key element for higher crops and plays an important role in the formation of proteins, vitamins, and enzymes. It is a constituent of amino acids such as cysteine and methionine, which act for the synthesis of other compounds containing reduced sulfur, such as chlorophyll and utilization of phosphorus and otheressential nutrients.Deficiency of this nutrient in soil is usually compensated by using chemical fertilizers. However, these fertilizers have harmful effects on the environment and decrease the quality of the agriculture products. Therefore, biological fertilizers are more useful for using in agricultural ecosystems.Sulfurshould be addedto the soil, usually in a reduced form such as elemental sulfur. Use of S oxidizers enhances the rate of natural oxidation of S and speeds up the production of sulfates and makes them available to plants consequently resulting in an increased plant yield. The role of chemolithotrophic bacteria of the genus Thiobacillus through oxidation process in the soil is usually emphasized. Sulfur oxidation is the most important step of sulfur cycle, which improves soil fertility. The result is formation of sulfate, which can be used by the plants, while the acidity produced by oxidation helps to solubilize nutrients in alkaline soils. These bacteria can solubilise the soil minerals through the production of H2SO4 that reacts with these non-soluble minerals and oxidised them to be available nutrients to the cultivated plants. Arbuscular MycorrhizalFungi isan important component ofthe microbiota, mutualistic symbioticsoilfungithatcolonizesthe rootsofmost cropplants.The AM symbiosis involves an about 80% of land plant species and 92% of plant families. They have theability to enhance host uptake of relativelyimmobile nutrientsparticularly phosphorus (P) andzinc (Zn),Manganese (Mn) andiron(Fe).Arbuscular mycorrhizal fungi increased plant uptake of phosphorus, nitrogen and water absorption. Inoculation withthesefungihas increased the yield of numerous field-grown crops.
This study was aimed to evaluate the effects of thiobacillus bacteria and sulfur application on soil pH, and also their interactions with mycorrhizal fungi in order to improve nutrients uptake and grain yield of maize under alkaline soil condition.
Materials and Methods: Treatments arranged as factorial experiment were based on RCBD with three replications. Treatments consisted of mycorrhizal inoculation: inoculated (m1) and non-inoculated (m0), thiobacillus in two levels of inoculated (t1) and non-inoculated (t0) and three levels of sulfur (S0: 0 kg.ha-1, S1: 250 kg.ha-1 and S2: 500 kg.ha-1). Four-row plots were prepared with row width and intra-row space of 60 and 20 cm, respectively. Seeds of maize (Zea Mays, Sc:647) were surface sterilized in a 10% (v/v) solution of hydrogen peroxide for 10 min, were rinsed with sterile distilled water. Before sowing, 300 kg of urea per hectare were applied according to the results of soil analysis. In order to facilitate oxidation of sulfur to sulfate form, , S was applied and thoroughly mixed into top 30 cm of soil 30 days before sowing. One week before sowing, thiobacillus (Thiobacillus thiooxidans) was inoculated. Inoculum of AM fungus Glomus intraradices, were added to soil just before planting at about 2 centimeters below seed sowing dept. To measure Arbuscular Mycorrhizal colonization, root plants collected one week before harvesting, cleared in 10% KOH at 80˚C for 2 h, and then acidified in 1% HCL for 60 min. Then the cleared roots were stained in a solution of Trypan blue. For nutrient analysis, the following procedure was applied. Zn, Fe, S, and P were determined by Inductively Coupled Plasma-atomic emission spectrometry apparatus. For this purpose, ash of seed samples was prepared at 500-550 degree of Celsius and then 5 ml of HCl 37% was added and with dionized water to reach to 50 ml. Kjeldahl method was used to determine nitrogen. Analysis of variance was performed on all experimental data and means were compared using the least Significant Differences (LSD) test with SAS software. The significance level was p>0.05 unless stated otherwise.
Results and Discussion: Results showed sulfur application increased significantly the amount of S, P, N, Fe, Zn, shoot dry weight and leaf chlorophyll of maize. With increasing Sulfur, sulfur concentration in plant shoot increased with linear trend. The highest S concentration was obtained with 200 mg.kg-1 S and the lowest amount was obtained from control plots. Applications of 50, 100, 150 and 200 mg.kg-1 S increased P content about 0.45, 3.91, 4.74 and 5.56 %, respectively. The highest N contentwas obtained with 100 mg.kg-1 S. The thiobacillus significantly increased P, Fe, Zn anddecreased root colonization and soil pH compared to control. Thiobacillus bacteria increased shoot P only with application of 100 mg.kg-1 S. Mycorrhizal inoculation increased the amount of N, P, S, Fe, Zn, shoot dry weight and root colonization. Inoculation with G.intra and G.mosseae increased shoot P content about 4.18 and 3.34% in comparison with the control plots. Single or combination of sulfur and thiobacillus had a negative impact on the root colonization. Based on the results it seems that sulfur, thiobacillus and mycorrhiza in alkaline soils improved crops nutrition and growth. S application and thiobacillus interaction on S concentration of maize shoot were significant. In condition of 0 or 50 mg.kg-1 S application, inoculation of thiobacillus is recommended. Also, the effects of mycorrhiza on P shoot was significant with no application of S.