Ahmad Farrokhian Firouzi; Mohammad javad Amiri; Hosein Hamidifar; Mehdi Bahrami
Abstract
Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd) as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil ...
Read More
Introduction Some methods of contaminated soils remediation reduces the mobile fraction of trace elements, which could contaminate groundwater or be taken up by soil organisms. Cadmium (Cd) as a heavy metal has received much attention in the past few decades due to its potential toxic impact on soil organism activity and compositions. Cadmium is a soil pollutant of no known essential biological functions, and may pose threats to soil-dwelling organisms and human health. Soil contamination with Cd usually originates from mining and smelting activities, atmospheric deposition from metallurgical industries, incineration of plastics and batteries, land application of sewage sludge, and burning of fossil fuels. Heavy metal immobilization using amendments is a simple and rapid method for the reduction of heavy metal pollution. One way of the assessment of contaminated soils is sequential extraction procedure. Sequential extraction of heavy metals in soils is an appropriate way to determine soil metal forms including soluble, exchangeable, carbonate, oxides of iron and manganese, and the residual. Its results are valuable in prediction of bioavailability, leaching rate and elements transformation in contaminated agricultural soils.
Materials and Methods The objective of this study was to synthesize magnetite nanoparticles (Fe3O4) stabilized with sodium dodecyl sulfate (SDS) and to investigate the effect of its different percentages (0, 1, 2.5, 5, and 10%) on the different fractions of cadmium in soil by sequential extraction method. The nanoparticles were synthesized following the protocol described by Si et al. (19). The investigations were carried out with a loamy sand topsoil. Before use, the soil was air-dried, homogenized and sieved (
Ahmad Farrokhian Firouzi; Hosein Hamidifar; Mohammad javad Amiri; Mehdi Bahrami
Abstract
Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats ...
Read More
Introduction: Nanoparticles due to their large specific area and reactivity recently have been used in several environmental remediation applications such as degradation of organic compounds and pesticides and adsorption of heavy metals and inorganic anions. Because of concern over potential threats of nanoparticle releases into the soil–water environment, a number of studies have been carried out to investigate the transport, retention and deposition of nanoparticles in saturated porous media. Many of these studies are based on measurements of transport in columns packed with idealized porous media consisting of spherical glass beads or sand. The nanoparticles are usually introduced into the column and breakthrough curve concentrations are measured at the column outlet. To examine the effect of various parameters on the transport of nanoparticles in porous medium, for convenience, all the parameters considered the same in the experiments, and only one parameter in the experiments is changed and investigated.
Materials and Methods: The objective of this research is quantitative study of modified magnetite nanoparticles transport in saturated sand-repacked columns. The modified magnetite nanoparticles with Sodium dodecyl sulfate were synthesized following the protocol described by Si et al. (2004). The experimental setup included a suspension reservoir, Teflon tubing, a HPLC pump, and a glass column (2.5 cm i.d. and 20 cm height). Therefore, breakthrough curves of modified magnetite nanoparticles with Sodium dodecyl sulfate and chloride were determined under saturated conditions and influence of nanoparticles concentration (0.1 and 0.5 g.L-1) and pore velocity (pressure head of 2 and 10 cm) on nanoparticles transport were investigated. For each medium bed, the background solution were first pumped through the column in the up-flow mode to obtain a steady flow state. Then, a tracer test was conducted by introducing CaCl2 solution into the column. The response curve was followed by analyzing the concentration history of Cl-1 in the effluent. Then, the influent was switched back to the background solution to thoroughly elute the tracer. Following the tracer test, a modified magnetite nanoparticles with sodium dodecyl sulfate was introduced into the column and the nanoparticle breakthrough curves were obtained by measuring the concentration history of total Fe in the effluent. Total iron concentration was analyzed with a flame atomic-absorption spectrophotometer.
One site and two site kinetic attachment-detachment models in HYDRUS-1D software were used to predict the nanoparticles transport. Also parameters of model efficiency coefficient (E), root mean square error (RMSE), geometric mean error ratio (GMER), and geometric standard deviation of error ratio (GSDER) were used to determine the accuracy of the models.
Results and Discussion: SEM measurements demonstrated that the particle size of nanoparticles was about 40-60 nm. The hydrodynamic dispersion coefficient (D) for each medium was obtained by fitting the classic 1-D convection–dispersion equation (CDE) to the experimental breakthrough data using the CXTFIT code (STANMOD software, USDA). The relative concentration of nanoparticles in comparison with chloride in the collected effluent from soil columns were much lower indicating a strong retention of nanoparticles in studied porous media, thereby attachment, deposition and possibly straining of nanoparticles.
Modeling results showed that in all sites of both models (one site and two-site kinetic attachment-detachment models), attachment was rapid and detachment was slow. These attachment kinetic sites may be because of consistent charges of minerals with attachment. Therefore, considering to same attachment-detachment behavior in two sites of two-site kinetic model, it is concluded that the one site kinetic model had eligible estimation of nanoparticles breakthrough curve in the studied sandy soil columns lonely. Efficiency of one site and two-site models varied from 0.761 to 0.851 and 0.760 to 0.846 respectively that indicated both models had good estimation of nanoparticles transport in the sandy soil. Also, logarithmic form of nanoparticles breakthrough curve showed that both models had good estimation of all ranges of breakthrough curve containing its tail.
Conclusion: Investigation of transport modeling of modified magnetite nanoparticles with Sodium dodecyl sulfate in a saturated sandy soil showed that decreasing the nanoparticles concentration would enhanced the mobility of modified magnetite nanoparticles, but increasing of pressure head had no effect on nanoparticles mobility. The results of models evaluation showed that both one site and two-site models had eligible estimation of nanoparticles transport in the studied sandy soil columns.
Hossein hamidifar; Mohammad hossein Ommid; Mehdi Bahrami; Mohammad javad Amiri
Abstract
Introduction: Water quality control is very important for people, animals and plants. Predicting the spread of contaminants is important for managing and protecting rivers and streams to the balance of the ecosystem. Pollutants are introduced into waterways, though a variety of sources such as point ...
Read More
Introduction: Water quality control is very important for people, animals and plants. Predicting the spread of contaminants is important for managing and protecting rivers and streams to the balance of the ecosystem. Pollutants are introduced into waterways, though a variety of sources such as point and non-point sources. Under steady state conditions, where longitudinal mixing is not significant, studying the lateral mixing is essential in evaluating the influence of pollutants on water quality. Lateral or transverse mixing is the hydraulic process by which a plume of contaminant spreads laterally and dilutes. In water quality management, the transverse mixing is more significant than either vertical or longitudinal dispersion, especially, when dealing with the release of wastes from point sources. Hence, a wide range of field, laboratory and numerical modelling approaches, including laboratory and field measurements, and analytical and numerical investigations have been developed, to quantify the lateral mixing coefficient. However, most of the researchers have ignored the effects of vegetation on the lateral mixing process in their studies. Many studies have shown that the flow characteristics through vegetation are different from those in non-vegetated waterways. For example, laboratory studies have revealed that flow velocity and large-scale turbulence tend to be greatly decreased within a plant canopy, because the resistance to flow by the vegetation. Also, vegetation affects the transport of dissolved and particulate material, such as sediment, nutrients and pollutants. In this study, the effect of the floodplain vegetation on lateral mixing coefficient in compound channels is investigated experimentally. Also, a comparison is made between the results of the present study with those obtained by previous researchers.
Materials and Methods: Experiments were carried out in a laboratory flume 18m long, 0.9m wide and 0.6m high with an asymmetric compound channel section. Three different densities of cylindrical PVC elements of 1 cm diameter were used in addition to the case without cylinders. Three-dimensional flow velocity measurements were taken using a down-looking four beam Acoustic Doppler Velcimeter (ADV). A highly concentrated solution (C0=10 g/L) of red dye (KMnO4, Potassium permanganate) was injected as a tracer sufficiently far downstream of the beginning of the flume such that the flow was fully developed determined by measuring velocity profiles. Variations of tracer concentration at three locations 4.00, 6.44 and 8.88 m downstream of the injection point were determined using image processing technique. In this technique, digital cameras are used at specified cross sections to capture the pixel intensity before and during the passage of the dye cloud. Using the Beer–Lambert Law, the pixel intensity is related to the dye concentration after a simple calibration. Afterward, the images could be used as input files for MATLAB’s Image Processing Toolbox.
Results and Discussion: The results showed that due to the strong secondary currents and unstable vortexes in the compound channel, the tracer cloud is periodic. The transverse mixing coefficient in the main channel is also always greater than that in the floodplain and its value increases with relative depth. Another factor that was found to affect the lateral mixing coefficient was the vegetation density. The non- dimensioed transverse mixing coefficient increases with vegetation density in the main channel as well as the floodplain. As vegetation density increases from 0.26 to 0.88%, the non- dimensioned transverse mixing coefficient increased up to 40% of the flow relative depth of 0.15. For low density vegetation (0.26%), the lateral mixing coefficient in both the main channel and floodplain was increase upto 30%. Also, for the vegetation density of 0.88%, the lateral mixing coefficient increases up to 80 and 107% for the floodplain and main channel, respectively. As the flow relative depth increase, the effect of the vegetation on the transverse mixing coefficient decreases on both the main channel and floodplain.
Conclusion: It can be concluded that floodplain vegetation affects the transverse mixing coefficient in the main channel and floodplain, significantly. Also, the flow relative depth and vegetation density are two important factors that control the mixing process in compound channels. The results of the present study were in good agreement with those obtained by Lin and Shiono (1995), Siono and Feng (2003), Shiono et al. (2003), Zeng et al. (2008) and Zhang et al. (2010). More researches are needed to extend the findings of the present study to the field applications.
H. Hamidifar; M.H. Omid; M. Nasrabadi
Abstract
چکیده
به منظور پیشگیری از آبشستگی گسترده ناشی از جریان پرسرعت خروجی در پایین دست سازه های هیدرولیکی مانند دریچه های کشویی، معمولاً از یک کف بند صلب استفاده می شود. اگرچه ...
Read More
چکیده
به منظور پیشگیری از آبشستگی گسترده ناشی از جریان پرسرعت خروجی در پایین دست سازه های هیدرولیکی مانند دریچه های کشویی، معمولاً از یک کف بند صلب استفاده می شود. اگرچه وجود کف بند تا حد زیادی منجر به حفاظت بستر می گردد، اما به علت مستهلک نشدن کامل انرژی مازاد جریان، در انتهای کف بند آبشستگی موضعی اتفاق می افتد که شکل و ابعاد حفره آبشستگی تشکیل شده بایستی در طراحی ها پیش بینی گردد. در این تحقیق، ابتدا مهمترین عوامل موثر بر فرآیند آبشستگی در پایین دست کف بند شناسایی و با استفاده از تحلیل ابعادی بصورت بدون بعد تنظیم گردیدند. سپس 22 آزمایش با مدت زمان 12 ساعت، بر مبنای پارامترهای بدون بعد بدست آمده از جمله پارامتر بدون بعد جدیدی که در برگیرنده تاثیر پارامترهای مختلف است، در یک مدل آزمایشگاهی که شامل یک دریچه کشویی و یک کانال مستطیلی به طول 0/9 متر، عرض 5/0 متر و ارتفاع 6/0 متر بود انجام شد. با استفاده از نتایج آزمایشگاهی، روابط و نمودارهای بدون بعد جدیدی برای محاسبه طول های مشخصه حفره آبشستگی از قبیل حداکثر عمق آبشستگی و محل وقوع آن، مقدار آبشستگی بستر در مجاورت کف بند، حداکثر گسترش حفره، فاصله افقی انتهای کفبند تا تاج تلماسه و ارتفاع تلماسه ارائه و با مطالعات پیشین مقایسه گردید. با توجه به وجود تشابه بین پروفیل های بی بعد حفره آبشستگی که از آزمایش های این تحقیق بدست آمد و با استفاده از رابطه ساده ارائه شده، می توان شکل گودال را در شرایط مختلف تعیین کرد و برای کاهش خسارات احتمالی، اقدامات لازم را انجام داد.
واژه های کلیدی: آبشستگی موضعی، دریچه کشویی، کف بند صلب، تشابه هندسی