Soil science
M. Eskandari; A. Zeinadini; M.N. Navidi; A. Salmanpour
Abstract
IntroductionSaffron, which its cultivation is compatible with the arid and semi-arid climate of Iran, is one of the most valuable agricultural products in the world. Therefore, the cultivation of this crop in different parts of the country has been enormously developed in recent years. More than 95% ...
Read More
IntroductionSaffron, which its cultivation is compatible with the arid and semi-arid climate of Iran, is one of the most valuable agricultural products in the world. Therefore, the cultivation of this crop in different parts of the country has been enormously developed in recent years. More than 95% of the world production of this precious product is allocated to Iran, which is mainly located in the two provinces of Khorasan Razavi and Southern Khorasan. The objective of this study was to determine the priority of lands for saffron cultivation by using TOPSIS method. Furthermore, in this study, TOPSIS, which is the second most widely used approach among multi-criteria decision making methods, was compared with the conventional parametric one to assess the land suitability for saffron production.Materials and MethodsTo achieve the objective of this study, 135 saffron farms in Khorasan Razavi, Southern Khorasan, Fars, Markazi and Kerman provinces were selected. In each farm, one pedon was dug and studied in detail. Soil samples were collected from different horizons of the pedons and taken to the laboratory for the designated physicochemical analyses. The average quantity of saffron yield in the last three years was recorded for each study point. The selected areas did not have climatic restrictions for saffron cultivation. For this purpose, in addition to local experience, the climate suitability index was calculated using the saffron climatic requirement table by its phenological period in each region. The effective soil criteria conditioned on the saffron yield were obtained using statistical analyses. By constructing a decision matrix and normalizing it, weighting the criteria by ranking order method and constructing a weighted matrix, determining the positive and negative ideal and then calculating the relative proximity of each alternative to the positive ideal, the preference of each alternative by TOPSIS method for saffron cultivation was determined. Then, the prioritization of alternatives was compared with the actual yield of saffron. Soil suitability index was also calculated using the table of soil and landscape requirements for saffron, and then compared with actual yield. Finally, the two schemes were validated and compared with each other.Results and DiscussionThe climate suitability index for saffron cultivation in the five studied areas indicated that the climate conditions in all areas were relatively similar. Consequently, soil properties can be considered as the only factors affecting the priority of lands for saffron cultivation in the studied areas. The results further revealed that three variables of lime content, salinity and exchangeable sodium percentage of soils under saffron cultivation in the country were higher than the critical level for saffron production. Therefore, these three variables are considered as the most important soil properties affecting the saffron yield. The order of weights assigned to the variables included salinity, exchangeable sodium percentage, lime, gravel, gypsum, organic carbon and soil reaction. Comparison of the order of priority of 135 options by TOPSIS with the actual yield of saffron showed an acceptable accuracy (R2 = 0.92) for this method. The soil index calculated by the parametric square root method for 135 soil profiles was also compared with the actual yield. The coefficient of determination obtained in this case was about 0.9, showing that TOPSIS was able to determine the suitability of lands for saffron cultivation better than the parametric method. Due to the ability of TOPSIS to evaluate a large number of evaluation criteria, this method is superior to the parametric method, which can consider a maximum of eight criteria in estimating the index.ConclusionThe outcome of this study showed a high accuracy of TOPSIS method in determining land suitability for development of saffron cultivation. This method is well able to use a large number of criteria that have negative or positive effects on the priority of alternatives. Furthermore, depending on the conditions of the decision making problem, one of the methods of weighting the criteria can be employed and combined with the TOPSIS method. The high accuracy of this method can be attributed to the use of mathematical relationships and matrices, data standardization by Euclidean soft method, and the nature of comparing both distances from the positive and negative ideals.
Soil science
A. Zeinadini; M.N. Navidi; A. Asadi Kangarshahi; M. Eskandari; S.A. Seyed jalali; A. Salmanpour; J. Seyedmohammadi; M. Ghasemi; S.A. Ghaffarinejad; Gh. Zareian
Abstract
Introduction: Iran is one of the most important countries in citrus (oranges) production. Citrus fruits are grown in different soils with a wide range of physical, chemical and fertility properties in the country, although some restrictions in the cultivated lands cause yield loss. In this regard, the ...
Read More
Introduction: Iran is one of the most important countries in citrus (oranges) production. Citrus fruits are grown in different soils with a wide range of physical, chemical and fertility properties in the country, although some restrictions in the cultivated lands cause yield loss. In this regard, the present study was conducted to investigate the effect of physical, chemical and soil fertility characteristics on citrus yield in important areas under cultivation, the regression relationships of characteristics with yield, and the rating of soil and land parameters. Materials and Methods: The 138 oranges orchards (118 orchards for rating and 20 orchards for validation) were selected in Fars, Mazanderan, Kerman and Guilan provinces. In each garden, a questionnaire was completed, a soil pedon was studied and soil samples were taken to carry out the appropriate physicochemical analyses. The selected soil and land characteristics were soil salinity (EC), exchangeable sodium percentage (ESP), pH, gypsum content, soil calcium carbonate (TNV), organic carbon (OC), clay, sand, silt, gravel, and soil available phosphorus and potassium contents. From the whole obtained data, 20 data were considered for validation purpose and the remaining data were used for modeling based on stepwise multivariate and simple regression methods. In these equations, the relationship between yield, as dependent variable, with soil and land characteristics, as independent variables, was investigated. Finally, land characteristics rating was obtained by the FAO method and the proposed crop requirements table was evaluated using the validation dataset. Results and Discussion: The results of descriptive statistics analysis showed that the variance values for available potassium, sand, clay, gravel and TNV were high and for pH and OC and gypsum were negligible. Therefore, most soil properties have a wide range of variation which could be related to the fact that oranges are grown in a wide range of soil types. The value of TNV varied between 10 and 33.3%. The presence of carbonate in soil reduces the availability of macro- and micronutrient elements in direct and indirect manners. The average of EC in the studied orchards was 5.4 dS.m-1. Minimum, maximum and average of ESP were 1.7, 28 and 10.7, respectively. The lowest and highest salinity and sodicity were observed in Mazandaran and Kerman soils, respectively. Maximum, minimum and average percentage of gypsum were 12, 0.36 and 3.54%, respectively. The highest amount of gypsum was observed in Bam and Shahdad regions of Kerman province and the lowest gypsum content was observed in Mazandaran and Guilan provinces. The soil pH varied from 6.63 to 8.8 with the average of 7.8. The soil OC values were between 0.05 and 3.53% and its average was 0.89%, showing the fact that the most studied soils were poor in organic matters. The average of soil available phosphorus and potassium in the studied orchards for citrus was less than the critical level. The average, minimum and maximum of available potassium were 224, 100 and 360 mg.kg-1, respectively. The mean, minimum and maximum amounts of available phosphorus were 21.6, 8 and 45.9 mg.kg-1, respectively. According to the multivariate regression model, among soil properties, EC, ESP, TNV, gypsum, gravel, available phosphorus and potassium were selected by the model. The determination coefficient of the model was 0.95, indicating that these properties have the greatest effect on citrus yield. Simple regression equations demonstrated that TNV, gypsum, EC, ESP, sand, clay, gravel, available potassium and phosphorous had the highest correlation (R2 > 0.6); and soil OC and pH had the lowest correlation (R2<0.2) with yield. The equations also revealed that soil EC, ESP, gypsum, TNV and gravel percentage had the greatest effect in yield loss, and soil organic carbon, absorbed phosphorus and potassium had the greatest effect on increasing citrus yield. As stated in equations, reported permissible and critical thresholds for effective soil properties on citrus yield, were 2.4 dS.m-1 for EC, 5 for ESP, 1.5% for gypsum, 20% for TNV, 22 mg.kg-1 for available phosphorus, 280 mg.kg-1 for available potassium, 110 cm for soil depth, and >2 m for groundwater level. Finally, evaluating the proposed crop requirements table with validation dataset fitted between citrus yield and soil index, resulted in the determination coefficient value of 0.79, denoting the acceptable accuracy of proposed table. Conclusion: Overall results showed that the main land limiting characteristics for orange production were soil salinity and sodicity, high amount of soil calcium carbonate and gypsum. Among unsuitable physical and fertility properties of soil, salinity and sodicity are the most effective factors affecting yield reduction. Consequently, proper management practices such as introducing cultivars compatible with these soil conditions, soil remediation and leaching operations to reduce soil salinity and sodicity are necessary. Furthermore, in most areas under orange cultivation such as Fars and Kerman provinces, the soil calcium carbonate content is more than the critical level for plant growth. In addition, the averages of soil available phosphorus and potassium were less than the critical levels, which should be considered for nutrient management of orchards. The proposed table of crop requirements seems to be accurate enough to conduct land suitability studies for orange varieties, especially cultivars grown in the north and south of the country.
Anahid Salmanpour; Mohammad hasan Salehi; jahangard mohammadi
Abstract
Introduction: The heavy metal concentration in agricultural lands, due to the toxicity, persistence and their accumulation in the environment has become a major concern. Ophiolitic formations extend in southern part of central Iran and parallel to folds of the Zagros Mountains, is located in the north ...
Read More
Introduction: The heavy metal concentration in agricultural lands, due to the toxicity, persistence and their accumulation in the environment has become a major concern. Ophiolitic formations extend in southern part of central Iran and parallel to folds of the Zagros Mountains, is located in the north of Neyriz town and in the west of Bakhtegan Lake. Rock weathering of these complexes forms sediments and soils with a large amount of Mn, Ni, Cr, Co, Mg and Fe. Laboratory analysis of Neyriz ophiolitic rocks indicates that they are a source of heavy metals as well, and may cause problems for the environment. However, there is no investigation in Neyriz area regarding contamination of the soils. The present study was conducted to assess soils pollution in Ghal-e Bahman area, 20 km from Neyriz which derived from ophiolitic formations of this area.
Materials and Methods: The study area located in the Ghal-e Bahman region, eastern part of Bakhtegan Lake. The soils of this region are affected from Neyriz ophiolite. In this region, three physiographic units including a hill, an alluvial fan and a lowland (playa) were separated. In each unit, some pedons were dug and classified according to American Soil Taxonomy. Soil samples were obtained from each genetic horizon and rock samples were also taken from ophiolitic formation. Then, chemical and physical properties were determined. Heavy metals were also extracted by nitric acid and amount of Cr, Ni, Co and Fe were calculated. Enrichment Factor (EF) and Geo-accumulation indices (Igeo) were also calculated and soils were classified according to their pollution level.
Results and Discussion: In general, soils on different landforms had different horizon properties and different classification. They are varied from a shallow, thin layer on hills to relative deep layer on lowland. These soils were classified in three different subgroups according to American Soil Taxonomy. Soils on ophiolitic hills classified as Lithic Torriothents because of a thin surface layer on a weathered bedrock. Soils developed on alluvial fan landform, with several alluvial subsurface horizons with different rock fragments percentage and size, was classified as Typic Torrifluvents; and the soils on lowland (Bakhtegan playa (was Gypsic Aquisalids because of salt and gypsum concentration in all layers and had redox color (chroma of less than 2) affected by high level of groundwater in the soil surface and subsurface layers.
The results showed that the amount of chromium with the average of 2200 mgkg-1, was 10 to 40 times higher than the Iran and Europe threshold levels (100 and 150 mgkg-1, respectively). The amount of nickel, with the average of 300 mgkg-1,were 10 fold higher than the threshold level and cobalt (19 mgkg-1) was lower than criteria defined by soils standards of Iran and Europe (40 mgkg-1).The amount of studied metals were the highest in ophiolitic hills, and playa soils were in second place in this respect. The amount of metals had a significant decrease in alluvial fan but didn’t drop under threshold level. The lowest amount of heavy metals in alluvial fan was probably because of the high percentage of sand, higher permeability and low soil water retention in all horizons. The negative significant correlation between the elements and sand also confirms this hypothesis. In addition, increasing elements at the depth of 70 cm of the soil in alluvial fan showed that land type (orchards) and long period of irrigation may cause leaching heavy metals from topsoil to the soil depth. However, no significance correlation was observed between the elements and soil organic carbon. The correlation coefficients between three elements revealed that all of them had the similar geologic origin and thus their spatial occurrence in soils can be attributed to the weathering of similar parent material.
Igeo showed an almost constant trend from ophiolitic hill (7.7-7.8) to alluvial fan (7.2-7.7) and a significant decrease in playa (3.9-6.2) for all metals. The variation of EF for nickel had an almost constant trend from ophiolitic hill (with the average of 0.6) to alluvial fan (with the average of 0.7) and a significant decrease in playa (with the average of 0.1). Also, a decreasing trend was observed from ophiolite hill (0.9 and 0.6 for chromium and cobalt, respectively) to alluvial fan (0.5 for both) and playa (0.3 and 0.1 for chromium and cobalt, respectively). A decreasing trend observed for indices can be due to the reduction of sediment transport processes and dilution effect of elements from hill to playa during the deposition and their formation .It seems that the EF index and the Igeo provide more useful information about hydrologic processes during formation of landform and development of soils than absolute values of heavy metals.
Conclusions: The present study showed that the amounts of chromium and nickel were higher than the threshold in studied soil. The soils derived from ophiolitic formation showed the highest values and the soils over alluvial fans had the lowest levels of heavy metals. Useful information was obtained from EF index and Igeo about the prominent geomorphic processes during landforms formation
Future studies should be focused on possible transfer of these elements into the groundwater and also trees of the orchards in Ghal-e Bahman region.
Anahid Salmanpour; Mohammad hasan Salehi; jahangard mohammadi
Abstract
Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, ...
Read More
Introduction: Soil organic matter is considered as an indicator of soil quality, because of its role on the stability of soil structure, water holding capacity, microbial activity, storage and release of nutrients. Although changes and trends of organic matter are assessed on the basis of organic carbon, it responds slowly to changes of soil management. Therefore, identifying sensitive components of organic carbon such as carbon labile lead to better understanding of the effect of land use change and soil management on soil quality.
The main components of sustainable agriculture in arid and semi-arid regions are the amount of water; and soil and water salinity. Water deficit and irrigation with saline water are important limiting factors for cropping and result in adverse effects on soil properties and soil quality. Soil carbon changes is a function of addition of plant debris and removal of it from soil by its decomposition. If the amount of organic carbon significantly reduced due to the degradation of the soil physical and chemical properties and soil quality, agricultural production will face serious problems. To this end, this study was done to evaluate soil quality using soil labile carbon and soil carbon management indices in some agricultural lands of Neyriz area, Fars province, Iran.
Materials and Methods: Five fields were selected in two regions, Dehfazel and Tal-e-mahtabi, consisted of irrigated wheat and barley with different amount of irrigation water and water salinity levels. Three farms were located in Dehfazel and two farms in Tal-e-Mahtabi region. In each farm, three points were randomly selected and soil samples were collected from 0-40 cm of the surface layer. Plant samples were taken from a 1x1 square meter and grain crop yield was calculated per hectare. Water samples were obtained in each region from the wells at the last irrigation. Physical and chemical characteristics of the soil and water samples were determined. Soil labile carbon and carbon management indices also were calculated. In carbon management index calculation, a reference farm was chosen at the vicinity of two regions which were abandoned for years. Statistical analysis like analysis of variance and correlation coefficients was done using SPSS 16.0 software.
Results and discussion: Results revealed that the highest crop yield (with the average of 5.7 tonh-1) was related to the farm which was irrigated with saline water (water EC 8.1 dSm-1) with enough water crop requirement. As this farm received the highest amount of water (with thw volume of 1039.5 mm), it seems that much more irrigation water probably provided the leaching fraction and prevented salt accumulation in the the root zone. Therefore, water salinity could not be a limiting factor for crop growth in this farm. This farm also had the highest content of organic carbon but it didn’t have the highest labile organic carbon and carbon management index (the value of 161.5).
On the other hand, the farm containing the highest labile carbon and carbon management indices (the value of 284), didn’t have the highest crop yield (with the average of 2.6 tonha-1) although it has recieved enough amount of water as well as non-saline irrigation water (water EC 2.28 dSm-1). The more carbon management index represents the higher soil carbon lability and soil quality and it demonstrates that soil have better condition for living microorganisms. Therefore, it can be concluded from the results that the higher soil quality not necessarily resulted in higher crop yield. Many researchers reported that better soil properties are not always resulted in the higher productivity.
Taking everything into account, carbon management index is not related to crop yield, but since it indirectly is related to microbial activity and calculated easily, it could be a useful indicator for rapid assessment of soil quality. Meanwhile, this indicator may be associated with qualitative properties of the crops such as grain protein, which is recommended for future investigations.
Conclusion: Results showed that labile organic carbon is more sensitive to crop management than total organic carbon. Amount of irrigation water and its salinity can influence the labile organic carbon content and thus the soil quality even in the fields with the same crop yield and management. Although, a higher amount of carbon management index does not result in higher yield production, it may be associated with crop quality attributes. More investigation is needed to give better idea in this regard.