saeed sarvari; Ali Naghi Ziaei; Ata Joodavi
Abstract
Introduction: Understanding water budget components is crucial for making decisions regarding water resources planning and management. Surface water–groundwater interactions are commonly investigated at the river reach scale and generally classified as connected or disconnected type systems. Connected ...
Read More
Introduction: Understanding water budget components is crucial for making decisions regarding water resources planning and management. Surface water–groundwater interactions are commonly investigated at the river reach scale and generally classified as connected or disconnected type systems. Connected systems are either gaining surface water system, where groundwater discharges through the streambed to contribute to streamflow, or losing surface water system which loses (or recharges) water to the local groundwater system. Disconnected systems are defined by an unsaturated zone beneath the surface water system which loses water at a rate related to the hydrogeological properties of the streambed and the aquifer. These interactions have significant implications for both water quantity and quality. Seepage of fresh groundwater into a river can be important in maintaining flows during extended dry periods. This can be critical for supplying the needs of surface water users such as irrigators as well as for aquatic ecosystems. Pumping from an aquifer near a river can dramatically change the amount of this base-flow to the river. In contrast, if the groundwater is contaminated, increased groundwater discharge can have a negative effect on river water quality. The Bojnourd catchment is located in North Khorasan province. The catchment covers an area of about 1265.8 km2. The main river in this area, Firouze River, is approximately 10 km in length, and is hydraulically connected to the Bojnourd alluvial aquifer. The alluvial aquifer of Bojnourd plain with 65.2 km2 area is mostly covered by urban area. Hence, effective management of water quantity and quality issues in the Bojnourd catchment requires quantifying flow between surface water and groundwater. Furthermore, conveying water from the outside of basin caused water table to rise which made some problems for urban buildings and infrastructures. Therefore, the river and aquifer interaction needs to be studied more comprehensively.
Materials and Methods: Numerous techniques and methods are available to describe and quantify the flow between surface water and ground water. This study combined two methods, numerical modeling using MODFLOW code and reach measurements, to quantitatively evaluate groundwater/surface water interactions under highly transient conditions. The groundwater flow system of the study area was conceptualized based on borehole logs, pumping tests, and available hydrogeological and geophysical information. Moreover, field work, including measuring streamflow in three seasons, was carried out to conceptualize and quantify the groundwater/surface water interactions. Following the conceptual model, the numerical model was developed to simulate flow through the system. The model grid had 1274 active cells with a uniform cell spacing of 250×250 m. The water exchanges between the main regional river, Firouze river, and Bojnourd aquifer was simulated using the River (RIV) package. Both hydraulic head target and flux target were used to calibrate the model. The head targets were compiled from the monitoring network which contains 11 observation wells. The flux targets were located in three measurement points along the Firouze river. The data obtained from the fieldwork were used as observed values for the groundwater/surface-water exchanges. The transient model was calibrated and validated for 15 hydrological years, i.e. from 1 October 2001 to 1 October 2016
Results and Discussion: Model performance was evaluated using root-mean-square error (RMSE). The model results were in agreement with corresponding observed data, including groundwater heads and measured groundwater/surface-water exchanges. The RMSE values during calibration and validation periods were 0.83 m and 1 m, respectively. Analyzing water balances resulted from transient simulation showed that Firouze river is gaining in some reaches and losing in other reaches. In losing reaches, the total flux into the aquifer is 6.4 MCM per year. In gaining reaches, the volume of groundwater discharges through the streambed is about 4 MCM per year. Furthermore, the effect of several management scenarios, including continuing the existing condition, turning the domestic wells off and implementing a sewage system by 2025, on groundwater heads and groundwater/surface-water exchanges was examined using the numerical model. Results showed that by implementing the sewage system, the volume of water discharged to the river would decrease, but it will prevent aquifer and river contamination caused by sewage water.
Conclusion: In this study, groundwater budget components in Bojnourd aquifer including groundwater/surface-water exchanges were calculated. The results showed that understanding of these surface water-groundwater interactions, which has been ignored in previous studies, is important for effective management of water quantity and quality issues in Bojnourd plain. Moreover, the methodology used in this study including numerical modeling and measuring flow at multiple points along the stream is effective and easy to apply to estimate the direction and magnitude of seepage on a stream reach basis.
Alieh Saadatpour; Amin Alizadeh; Ali Naghi Ziaei; azizallah izady
Abstract
Introduction: During the last decades, arid and semi-arid regions has faced a severe problem of depletion of groundwater resources due to the over-exploitation of the aquifer. Moreover, groundwater and surface water are not isolated components of the hydrologic system, but instead ...
Read More
Introduction: During the last decades, arid and semi-arid regions has faced a severe problem of depletion of groundwater resources due to the over-exploitation of the aquifer. Moreover, groundwater and surface water are not isolated components of the hydrologic system, but instead interact in a variety of aspects in which development of one commonly affects the other. Additionally, the interaction is often complicated by agricultural activities including surface water diversion, groundwater pumping and irrigation. This study presents an integrated SWAT-MODFLOW model that couples land surface hydrology and groundwater hydrology to determine spatial groundwater percolation patterns considering allowable groundwater pumping rates for the Neishaboor watershed, Iran. Within the integrated model, the pumped groundwater is applied as irrigation to the cultivated fields within the SWAT model, with deep percolation from the soil profile bottom applied to the MODFLOW model as recharge. The model is tested against observed stream flow and water table elevation, with model output then used to assess and quantify spatial-temporal patterns of groundwater recharge to the aquifer.
Materials and Methods: The recently developed SWAT-MODFLOW modeling code simulates spatially-distributed hydrologic processes in the coupled land surface / aquifer system, with SWAT simulating land surface, soil zone, and stream flow routing processes and MODFLOW simulating groundwater flow and groundwater/surface water interaction processes. Modifications which is done to the modeling code includes: 1) Linking pumping from MODFLOW cells to SWAT HRUs for groundwater irrigation and 2) Imposing shallow water table percolation and lateral flow conditions for SWAT HRUs when the MODFLOW-simulated water table is within the soil profile of the HRU. The integrated SWAT-MODFLOW framework is tested in the Neishaboor watershed (9157 km2) for the 1998 to 2011 time period. Climate of the region is classified as semi-arid, with an average annual precipitation of 265 mm that varies considerably from one year to another. The mean annual temperatures changes from 13°C in the mountainous area to 13.8°C in the plain area and the annual potential evapotranspiration is about 2,335 mm. The main crops that are grown in the watershed is irrigated and rain fed wheat during fall and winter and corn silage during summer. Regarding previous studies, about 93.5% of the groundwater withdrawals in the Neishaboor watershed are consumed in agriculture, mostly for irrigation. Therefore, irrigation practices play a crucial role in the water resources balance in the study area. Within the integrated model, the pumped groundwater is applied as irrigation to the cultivated fields within the SWAT model, with deep percolation from the soil profile bottom applied to the MODFLOW model as recharge. The SWAT model was calibrated and tested in SWAT-CUP for the 2001-2009 and 2010-2011 periods, against stream flow and developed model was calibrated manually against groundwater level data.
Results and Discussion: Annual average recharge, calculated from the daily recharge values pass from SWAT to MODFLOW, demonstrating higher recharge rates in the alluvial fans and upland plain. Observed and simulated stream discharge in four hydrometric stations demonstrate good similarity results with the observed hydrograph. The NS values for monthly discharge rates are considered acceptable, however, the field-estimated stream flow estimates contain a high degree of uncertainty. Simulated cell-wise groundwater hydraulic head at the end of the simulation is compared with observation values with the highest water table elevation occurring in the north east and low water table elevation occurring in the outlet. Comparing observed and simulated average groundwater levels at the 48 monitoring wells, the deviation from the 45-degree line is less than 2.5 m for over 73% of the circles. The manual calibrated model can capture the main temporal trend. Overall, the model well captures the long-term characteristics of the regional groundwater level.
Conclusion: In this study, a new coupled model, referred to as SWAT-MODFLOW was used to model a dry and semi-arid region with a complicated irrigation system with groundwater pumping. A comprehensive model, will enable accurate simulations of stream flow and water table fluctuations in watersheds and aquifers respectably. In short, surface water infiltration is passed from SWAT to MODFLOW based on the contributing areas of the HRUs to the groundwater grid. Pumping agriculture water is then calculated and passed back to SWAT. The need for such a model is highlighted by the Neishaboor basin, where the agriculture is completely based on groundwater pumping. The case study in the Neishaboor basin demonstrated the applicability of the model for large, dry basins. The model will be used to determine best management practices for groundwater pumping in the region.
shima tajabadi; Bijan Ghahraman; Ali Naghi Ziaei
Abstract
Introduction: The range of meteorological parameters, such as temperature, are different at different scales. Fractal geometry is a branch of mathematics that has many applications in the field of discrete and continuous domains. Downscaling may be done by different methods, including univariate, multivariate ...
Read More
Introduction: The range of meteorological parameters, such as temperature, are different at different scales. Fractal geometry is a branch of mathematics that has many applications in the field of discrete and continuous domains. Downscaling may be done by different methods, including univariate, multivariate regression functions, splined function and fractal function. Finding the best model for fractal downscaling, is needed to implement the distance between measured and modeled data sets. This distance may be estimated by different methods, including Euclidian. For temporal downscaling, the data are two-dimensional, i.e. time and that of principal variable (e.g. temperatures).In such a case, the dimensionality problem arises in Euclidean space. In these cases, data are usually changed to non-dimensional forms which are referred to standardization, normalization, scaling, or non-dimensionalizing. So, in addition to imbalance of data calculating distance between two sets, we are also considering the impact of standardized data on the number of interpolation points, run time, and accuracy of downscaling the temperature of Mashhad synoptic station.
Materials and Methods: In this paper, fractal model was used for modeling and downscaling temperature datasets for the period of 2007- 2009 at Mashhad Synoptic stations with two approaches of Hasdurf distance to determine the interpolation points (first approach: in first approach original data was used. Second approach: in second approach the data were standardized). We adopted some criteria, such as root mean squared error, correlation, and Akaike information criteria to assess the accuracy of fractal downscaling.
Mashhad is the second most populous city in Iran and capital of Razavi Khorasan Province. It is located in the northeast of the country, close to the borders of Turkmenistan and Afghanistan. It is built-up (or metro) area was home to 2,782,976 inhabitants including Mashhad Taman and Torqabeh cities. It was a major oasis along the ancientSilk Road connecting with Merv in the East. The city is located at 36.20º North latitude and 59.35º East longitude, Mashhad features a steppe climate with hot summers and cool winters. The city only receives about 250 mm of precipitation per year, summers are typically hot and dry, with high temperatures sometimes exceeds 35 °C (95 °F). Winters are typically cool to cold and somewhat humid, with overnight lows routinely dropping below freezing.
At first, fractal method was used to produce daily temperature from daily datasets with two attitude and different interval interpolation (5, 10, 15days). Then the same process was applied to produce 3-hours temperature.
Results and Discussion:
1. Downscaling for daily temperature: In this part, we considered that which standardizing approach and which interval interpolation, will carry the best accuracy for the fractal modeling. Although RMSE, R2, AIC, show that standardized approach is not better, but the difference is not substantial.
Results from fractal modeling from 5-day interval interpolation and 10-day interval interpolation with daily measured temperature in Mashhad compared based on 1:1 line of perfect agreement, and showed acceptable (=5%) behavior. In both approaches and two interval interpolation with both 5 and 10 days, predicted temperatures imitate the behavior of the measured temperatures. However, simulation with no standardization approach show better results for both distance interpolation compared to the second approach with standardization.
2. Downscaling daily temperature to 3-hour interval: We compared downscaled 3-hour temperature from two standardizing approaches and two timesinterpolation based on daily temperature with 3-hour measured temperature and compared the results with respect to 1:1 line of perfect agreement. It is clear that the results of the three-hour downscaling show the same results with daily downscaling, because temperature shows the fractal behavior. Although both approaches perform well but un-standardizing is better, yet the difference is not pronounced.
Conclusion: Overall, in both approaches, three-hour and daily downscaling is done precisely and with high quality. The number of interpolation points was reduced by 30% under the second standardizing approach, which followed by considerable computer runtime. However, the result shows that the first approach had better modeling.
The comparison results of the modeling with 5 intervals interpolation and with 10, the 10 intervals interpolation were more acceptable, such that correlation coefficient was between (first approach: 0.98 and 0.7, second approach: 0.98 and 0.65) while RMSE was between (first approach: 1.33 and 3.27 ° C and second approach: 1.44 and 6.02 ° C), and AICc was between (first approach: 0.55-3.27 and second approach: 2.87-3.51).The intercepts and slopes of regression lines between measured and predicted temperatures were not statistically (5% level of significant) different from 0 and 1, respectively.
Yavar Pourmohamad; Mohammad Mousavi baygi; Amin Alizadeh; Alinaghi Ziaei; Mohammad Bannayan
Abstract
Introductionin current situation when world is facing massive population, producing enough food and adequate income for people is a big challenge specifically for governors. This challenge gets even harder in recent decades, due to global population growth which was projected to increase to 7.8 billion ...
Read More
Introductionin current situation when world is facing massive population, producing enough food and adequate income for people is a big challenge specifically for governors. This challenge gets even harder in recent decades, due to global population growth which was projected to increase to 7.8 billion in 2025. Agriculture as the only industry that has ability to produce food is consuming 90 percent of fresh water globally. Despite of increasing for food demand, appropriate agricultural land and fresh water resources are restricted. To solve this problem, one is to increase water productivity which can be obtain by irrigation. Iran is not only exempted from this situation but also has more critical situation due to its dry climate and inappropriate precipitation distribution spatially and temporally, also uneven distribution of population which is concentrate in small area. The only reasonable solution by considering water resources limitation and also restricted crop area is changing crop pattern to reach maximum or at least same amount of income by using same or less amount of water. The purpose of this study is to assess financial water productivity and optimize farmer’s income by changing in each crop acreage at basin and sub-basin level with no extra groundwater withdrawals, also in order to repair the damages which has enforce to groundwater resources during last decades a scenario of using only 80percent of renewable water were applied and crop area were optimize to provide maximum or same income for farmers.
Materials and methodsThe Neyshabour basin is located in northeast of Iran, the total geographical area of basin is 73,000 km2 consisting of 41,000 km2 plain and the rest of basin is mountains. This Basin is a part of Kalshoor catchment that is located in southern part of Binaloud heights and northeast of KavirMarkazi. In this study whole Neyshabour basin were divided into 199 sub-basins based on pervious study.Based on official reports, agriculture consumes around 93.5percent of the groundwater withdrawals in Neyshabour basin and mostly in irrigation fields, surface water resources share in total water resource withdrawals is about 4.2percent, which means that groundwater is a primary source of fresh water for different purposes and surface water has a minor role in providing water supply services in the Neyshabour basin. To determine crop cultivation area, major crops divided into two groups. two winter crops (Wheat and Barley) and two summer crops (Maize and Tomato). To accomplish land classification by using supervised method, a training area is needed, so different farms for each crop were chosen by consulting with official agricultural organization expert and multiple point read on GPS for each crop. The maximum likelihood (MLC) method was selected for the land cover classification. To estimate the amount of precipitation at each 199 sub-basins, 13 station data for precipitation were collected, these stations are including 11 pluviometry stations, one climatology station and one synoptic station. Actual evapotranspiration (ETa) is needed to estimate actual yield (Ya). Surface Energy Balance Algorithm for Land (SEBAL) technique were applied on Landsat 8 OLI images. To calculate actual ETa, the following steps in flowchart were modeled as tool in ArcGIS 10.3 and a spreadsheet file. To estimate actual crop yield, the suggested procedure by FAO-33 and FAO-66 were followed. Financial productivity could be defined in differently according to interest. In this study several of these definition was used. These definitions are Income productivity (IP) and Profit productivity (PP). To optimize crop area, linear programing technique were used.
Results and discussionaverage actual evapotranspiration result for each sub-basin are shown in context. In some sub-basins which there were no evapotranspiration are shown in white. And it happens in those sub-basins which assigned as desert in land classification. In figures 8 and 9 minimum amount of income and profit productivity for wheat and barley is negative, this number means in those area the value of precipitation is higher than value of evapotranspiration, so lower part of eq. 21 and 22 would be negative and in result water productivity would be negative. Since most of precipitation occurs during cold season of the year these numbers are expected. Two sub-basins of 43 and 82 has the value of negative, it means in these two sub-basins groundwater are recharging during the year 2014-2015.The maximum value of income and profit productivity belong to wheat and barley which are winter crops and mostly rain fed, so amount applied water would be so low and in result productivity increased. Among the summer crops maize has the most income and profit income which can be interpret due to their growing period and the crop types. Maize has around 110 days to reach to maturity and harvest, on the other hand tomato needs 145 days to harvest. Some plant is C3 and some are C4. C4 plants produce more biomass than C3 crops with same amount of water which leads to more productivity. The results showed that tomato should have the most changes in area reduction (0.2) and maize should have no changes in both scenarios. Crop area should reduce to 66percent of current cultivation area to maintain ground water level and only 6percent reduction in cultivation area would result in 20percent groundwater recharging.
Conclusion to save groundwater resources or even retrieve the only water resource, cultivation area must reduce if the crop pattern will not change. In this study only four crops were studied. It seems best solution is to introduce alternative crop.
neda Sheikh Rezazadeh Nikou; Mohammad javad monem; A. Ziaei
Abstract
Introduction: Pivot weirs (sharp crested inclined weirs, Fig. 1-a) is frequently used for discharge measurement, controlling water surface and flow diversion. Some typical features of pivot weirs are: (a) overshot design for better water level control, (b) Their application as head gates, turnout or ...
Read More
Introduction: Pivot weirs (sharp crested inclined weirs, Fig. 1-a) is frequently used for discharge measurement, controlling water surface and flow diversion. Some typical features of pivot weirs are: (a) overshot design for better water level control, (b) Their application as head gates, turnout or check structure which requiring low head loss and high accuracy, (c) ease of removing sediment deposit behind the weir, and (d) ability to manage and monitor on-site or operating remotely when connected to a supervisory control and data acquisition (SCADA) network. Kindsvater and Carter (8) derived a weir discharge equation based on energy and continuity equations. Hulsing (4) determined head-discharge relationship of inclined suppressed sharp crested weir with the slope of 3:3, 2:3 and 1:3 toward downstream and compared them with the equivalent normal sharp crested weir. In the USBR report on pivot weirs (regarding The Boulder Canyon Project,1948) the head discharge data of the suppressed pivot weir were presented in a channel with 5.5m length, 2.9m depth and 0.61m width. Some field experiments were also carried out in the IID (Imperial Irrigation District) on a trapezoidal cross-section (0.61 m bottom width) channel with pivot weir of 1.7m length, and two different widths of 1.63m. The flow rate (350-880 lit/s) was held constant and different angles (15-50°) calibrated instead of holding the angle constant and varying the flow rate. Some other laboratory tests were performed with Wahlin and Replogle (1994) on two pivot weirs with 1.2 m and 1.14 m width for the 0.61 m and 0.46 m length of blade and contraction factor of 0.925. RUBICON Company established an extensive operation on the application and automation of pivot weirs in irrigation channels in Australia (Www.rubicon.com). All previous studies concentrated on modifying the normal rectangular weir head-discharge equation so that it can be used for the pivot weirs. In this study, it is trying to derive a unique head-discharge equation for pivot weirs based on dimension analysis and critical discharge equation (implementing Ferro rule). This equation can be used for different inclined angles and side contractions. The obtained unique and simple discharge equation can be used in automation of this structure.
Material and Method: In this research, experimental data consist of experiments carried out in hydraulic research institute of Tehran, Iran and experiments of USBR on Pivot weir with side contraction in 0.925 in the canal with 1.14 m width and 0.46 m blade length (Wahlin and Replogle, 1994). Experiments of the water institute of Tehran were carried out in the concrete rectangular weir with 10.30m long, 1m wide and 1m depth (Fig.2). Experimental model was consisted of canals, water supply system, dampers (avoided of turbulent flow upstream of pivot weir), pivot weirs, sluice gate at the end of the channel (make different tail waters). With respect to laboratory equipment’s, three pivot weirs with of 80×65, 60×55 and 40×40 (cm×cm) respectively length of the blade and the width was built and set 5.5 m far from the first of the canal. Discharge was determined from the calibrated weir located at the upstream of pivot weir. A manual point gauge with ±0.01 mm sensitivity was used to measure water surface levels.
Extraction of discharge equation: Dimensional Analysis based on Ferro rule (2000 and 2001) is used to determine the discharge formula of pivot weirs. Since the h-Q function is usually exponential, the relation between dimensionless parameters could be defined as Ferro rule.
Results and Discussion: The rating curve of the pivot weirs with different side contractions is compared with the normal suppressed rectangular weir (equal weir height) in Fig. 3. The discharge of normal suppressed rectangular weir was calculated from the discharge equation of Kindsvater-Carter and discharge coefficient of Rehbock (1) for the equal weir height and head of pivot weirs. For a constant water head, the discharge of pivot weir with a side contraction of 0.925 is more than the normal suppressed weir. When the weir plate is inclined to the bottom of the canal, because of the stagnation area behind the weir plate, the streamlines approach the weir blade smoothly and the energy dissipation is lower than for the normal weirs. The vortex behind the weir plate increases as the inclined angle increases and subsequently the discharge coefficient decreases. Reduction of discharge for a constant water head in contract weirs is simply justified by decreasing of the weir width. The α and β coefficients were obtained based on all experimental data. Discharge equation obtained based on critical depth-discharge equation.
Conclusion: In this study, based on dimension analysis a unique head-discharge relation was obtained which could be used for different inclined angels and side contractions. This equation is more appropriate than previous formulas which are modifications to the normal weir head-discharge equation. The accuracy of this equation was evaluated by different data sets including different inclined angle, side contractions, weir heights and also a wide discharge range. This equation could be used in the automated irrigation network easily.
sajjad razavi; kamran davary; Bijan Ghahraman; Ali Naghi Ziaei; azizallah izady; kazem esahgian; mehri shahedy; fatemeh taleby
Abstract
Limitation of water resources in Iran motivates sustaining and preserving of the resources in order to supply future water needs. Fulfilling these objectives will not be possible unless having accurate water balance of watersheds. The purpose of this study is to estimate the water balance parameters ...
Read More
Limitation of water resources in Iran motivates sustaining and preserving of the resources in order to supply future water needs. Fulfilling these objectives will not be possible unless having accurate water balance of watersheds. The purpose of this study is to estimate the water balance parameters using a distributed method. The large number of distributed models and methods was studied and “Quasi Distributed Water Balance model” (QDWB) was written in the MATLAB programming environment. To conduct this model, it is needed that each data layer (precipitation, potential evapotranspiration, land use, soil data,..) to be converted into grid format. In this research the 500m * 500m cell size was used and water balance parameters for each cell was estimated. Runoff and deep percolation obtained from surface balance equation and irrigation needs were estimated based on soil moisture deficit. The study area of 9157 square kilometers is Neyshabour- Rokh watershed. The results showed there is a good correlation between water balance parameters such as precipitation-runoff, precipitation-evapotranspiration, and precipitation- deep percoulation and demonstrate that QDWB model is consistent with the basin hydrological process.Change in soil moisture at basin wide is 1 MCM in 1388-89 and 40 MCM in 1380-81. The evapotranspiration results from a distributed model” SWAT” and QDWB model were in good agreement.
A. Moghaddam; A. Alizadeh; Alinaghi Ziaei; A. Farid Hosseini; D. Fallah Heravi
Abstract
Genetic Algorithm as a one of the main evolutionary algorithms has had a most successful role in the water distribution network optimization.This algorithmhas been undergoing many reforms and improved versions are published. A type of genetic algorithms is Fast Messy Genetic Algorithm (FMGA), that has ...
Read More
Genetic Algorithm as a one of the main evolutionary algorithms has had a most successful role in the water distribution network optimization.This algorithmhas been undergoing many reforms and improved versions are published. A type of genetic algorithms is Fast Messy Genetic Algorithm (FMGA), that has the ability to increase the convergence rate in solving optimization problems with reducing the length of chromosomes and removing the inefficient genes, meanwhile studying the chromosomes which are not equal in terms of gene strings.In this paper, for evaluation of the FMGA performance in solving water distribution network optimization problems, after the sensitivity analysis and determining the best values of these parameters, two benchmark networks and a real network are analyzed, which are named Two-loop network, the Hanoi network and Jangal City network, respectively, and the results were compared with previous researches. Least-cost in two loop network was estimated after 2880 number of function evaluations that had significant improvements compared to the results of previous researches. In Hanoi network, the minimum cost obtained equal to 6.045×106 $ that is less than other researchers results are issued so far. After proving the efficiency of algorithm, its performance was shown in design of real Jangal city network according to increasing network size and design constraints.
N. Validi; Alinaghi Ziaei; B. Ghahraman; H. Ansari
Abstract
For optimal management of a catchment, the time and space downscaling of hydrological properties is essential. To achieve accurate energy and water budget equations in every time or space resolution, spatial and temporal downscaled information of water budget's components are used. The fractal geometry ...
Read More
For optimal management of a catchment, the time and space downscaling of hydrological properties is essential. To achieve accurate energy and water budget equations in every time or space resolution, spatial and temporal downscaled information of water budget's components are used. The fractal geometry is a branch of mathematics which has been utilized in discrete and periodic fields to generate data with different scales from observed data. In this research, the fractal interpolation functions were used for temporal downscaling of daily temperature data. The fractal dimension was used to express the rate of irregularities or fluctuations in the quatity. The fractal dimension of Mashhad daily temperature datasets for the period of 1992- 2007 was calculated. The mean of the fractal dimension was obtained 1.54. Moreover, using the fractal interpolation functions and the midday temperature dataset with 15 days resolution, hourly temperature dataset has been estimated and compared with observed dataset. It was shown that despite the considerable time interval between two consecutive measurements (as 15 days), the temperature time series with 3 hours resolution were obtained. The determination coefficient and the root mean square error of the model are 0.77 and 7, respectively.
A.R. Gheisi; A.N. Ziaei; Saeed Reza Khodshenas
Abstract
Damage or failure is an inevitable event which should be considered in all decisions taken at planning-, design-, operation- and maintenance-level for a water distribution network (WDN). So far several studies are conducted about reliability analysis in literature, but very little attention is paid to ...
Read More
Damage or failure is an inevitable event which should be considered in all decisions taken at planning-, design-, operation- and maintenance-level for a water distribution network (WDN). So far several studies are conducted about reliability analysis in literature, but very little attention is paid to the damage tolerance analysis (DTA) of WDNs with different orders of failures. This may be due to the heavy and extremely time consuming computational workloads commonly required for DTA. In this study required relationships for DTA of WDNs with different orders of failure are derived. Additionally some equations are proposed to estimate the possible errors in these relationships. Then an attempt was made to evaluate the damage tolerance of sixteen designs of a hypothetical WDN with different orders of failure. The results indicate that application of the proposed equations of this study could significantly prevent redundant and unnecessary hydraulic simulations which may complicate the DTA of WDNs. Moreover the results reveal that the tolerance of the WDN to various orders of failures gradually decreases by decreasing the diameters of pipes. Comparing the damage tolerance of a network with different orders of failure, one could estimate the sensitivity of a WDN to simultaneous failures.
M. Sadeghi; B. Ghahraman; A.N. Ziaei; K. Davary
Abstract
After introducing similar media theory, many scaling methods were developed and have been widely used to cope with soil variability problem as well as to achieve invariant solutions of Richards’ equation. Recently, a method was developed for scaling Richards’ equation (RE) for dissimilar soils such ...
Read More
After introducing similar media theory, many scaling methods were developed and have been widely used to cope with soil variability problem as well as to achieve invariant solutions of Richards’ equation. Recently, a method was developed for scaling Richards’ equation (RE) for dissimilar soils such that the scaled RE is independent of soil hydraulic properties for a wide range of soils. This method uses exponential – power hydraulic functions which are restricted to a limited range of soil-water content and matric potential. Hence, this method does not apply to the phenomena in which soil-water content and matric potential exceeds this range. Therefore, this research was performed to extend the method for a wider range of soil-water content and matric potential. This objective was achieved by modifying the exponential – power hydraulic functions and the scaling method was extended to the entire range of soil wetness (from saturated to dry). This study was followed to solve RE for soil-water infiltration using scaling. To do so, numerical solutions of the scaled RE was approximated by a scaled form of Philip three-term equation with soil-independent coefficients. The obtained approximate solution was tested using literature data of infiltration experiments on a sandy and two clayey soils. Results indicated that the solution can reasonably estimate (with the average relative error at most 9% for the cases studied here) measured infiltrated water. Also, it was shown that this solution can accurately approximate (with the average relative error at most 4% for the cases studied here) the numerical solutions of RE (for the same conditions and hydraulic functions). Hence, because of its simplicity, the solution is proposed as an alternative for numerical solutions of RE or other empirical equations for soil-water infiltration. Additionally, this solution can be easily applied to determine soil hydraulic functions by inverse solutions.
S. Khazaei; H. Ansari; B. Ghahraman; A.N. Ziaee
Abstract
With increasing population and scarcity of fresh water,one of possible solutions is, using marginal waters (saline and sodic water). Using marginal waters should be taken into consideration and special studies. Since most processes related to soil and water, take place in unsaturated field condition, ...
Read More
With increasing population and scarcity of fresh water,one of possible solutions is, using marginal waters (saline and sodic water). Using marginal waters should be taken into consideration and special studies. Since most processes related to soil and water, take place in unsaturated field condition, The purpose of this research is evaluation of saline and sodic water effect on diffusivity and unsaturated hydraulic conductivity.for this purpose, two soil types include loamy and sandy, two levels of SAR, 5 and 20, two levels of EC, 4 and 12 ds/m and distilled water were used. NaCl, CaCl2 and MgCl2 salts at Ca:Mg=2:1 were used to prepare treatments. Diffusivity was measured by one step out flow method at the suction of 15 bar. Unsaturated hydraulic conductivity calculated by using the diffusivity and the slope of the soil moisture charactristic curve. At both soils with increasing SAR and decreasing EC, diffusivity and unsaturated hydraulic conductivity decreased and this reduction was more at low moistures. Sandy soil was affected less than loamy soil. In comparison of treatments that cause the least and the most dispersion, diffusivity and hydraulic conductivity for loamy soil, decreased 100% and for sandy soil at low moistures, diffusivity and hydraulic conductivity decreased about 91% and 99%, respectively.
R. Mansouri; K. Esmaili; A.N. Ziaei; Hossein Ansari; S. R. Khodashenas
Abstract
In arid and semi-arid regions, collection of surface and subsurface waters in small seasonal rivers is very crucial, particularly in dry seasons. The cost of construction and maintenance of classical water intakes makes them inappropriate for these rivers. In this study a rather new method to divert ...
Read More
In arid and semi-arid regions, collection of surface and subsurface waters in small seasonal rivers is very crucial, particularly in dry seasons. The cost of construction and maintenance of classical water intakes makes them inappropriate for these rivers. In this study a rather new method to divert surface and subsurface water is experimentally evaluated. In this kind of intakes, a couple of trenches are excavated and the drain pipes are installed in them and then filled with very porous materials. Indeed the system acts as a river drainage network. This method not only reduces the construction and maintenance costs but also minimize the disturbance of river topology and morphology. Therefore this intake is also suitable for rivers with high sedimentary loads. In a few small rivers in Khorasan Razavi province, Islamic republic of Iran, such systems have been installed but their design and applicability have not been evaluated. In this research, experimental model of the intake to collect flow was built for flow diversion and flow rate deviation examined. Results showed a direct relationship between flow diversion with water level and with increasing distance between the drainages, the drainage flow increases. Drainage flow in the porous medium is initially decreased and then increased and drainage flow is the lowest in the middle drainage. In the review drainage arrange, the drainage of two deep with shorter porous medium is more suitable. Finally, regression mathematical model for the structural design of the intake subsurface with porous medium and drainage system were presented.