moslem servati; Hamidreza Momtaz
Abstract
Introduction: Cation Exchange Capacity (CEC) refers to the amount of negative charges available on the soil colloids surface. Clay and organic colloids carry a negative charge on their surfaces. Cations are attracted to the colloids by electrostatic bonds. Therefore, the charge of the soil is zero. For ...
Read More
Introduction: Cation Exchange Capacity (CEC) refers to the amount of negative charges available on the soil colloids surface. Clay and organic colloids carry a negative charge on their surfaces. Cations are attracted to the colloids by electrostatic bonds. Therefore, the charge of the soil is zero. For fertility map planning and commonly indicator of soil condition, CEC is an essential property. CEC is commonly measured on the fine earth fraction (soil particles less than 2 mm in size). CEC could be obtained directly but its measurement is difficult and expensive in the arid and semi-arid regions with high amounts of gypsum and lime. Pedotransfer functions (PTFs) are appropriate tools to estimate CEC from more readily measured properties such as texture, organic carbon, gravel, pH and etc. Regression PTFs, artificial neural networks (ANN), and hybrids technique (HA) could be used to developing pedotransfer functions. The prior research revealed that could provide superior predictive performance when developed ANN model. Furthermore, ANN technique has no comprehensive method to select network learning algorithm and stopping algorithm in the minimum local. Therefore, application of optimization algorithms such as Genetic (GA) and firefly (FA) is necessary. The Purpose of the present study was to evaluate the performance of FA and GA to predict the soil cation exchange capacity by ANN technique based on easily-measured soil properties.
Materials and Methods: 220 soil samples were collected from 39 soil profiles located in Golfaraj (Jolfa) area of East Azarbaijan province. The study site lies from 45° 30ʹ to 45° 53ʹ east longitudes and from 38° 42ʹ to 38° 46ʹ north latitudes. Then, soil samples were air-dried and passed through a 10 mesh sieve for removing gravels and root residues. Soil textural class, organic matter content and CEC were, respectively, determined by hydrometer, Walkley and Black, and bower methods. The artificial neural network (ANN), artificial neural network-Genetic algorithm (ANN-GA) and artificial neural network-Firefly algorithms (ANN-FA) models were applied to predict the soil cation exchange capacity on the basis of the easily-measured soil properties. In ANN-GA and ANN-FA models, soil CEC was estimated via an artificial neural network and were then optimized using a genetic algorithm and firefly algorithm. The Genetic algorithms are commonly used to generate high-quality solutions to be optimized by relying on crossover, mutation and selection operators. The firefly algorithm is modeled by the light attenuation over fireflies’ mutual gravitation, instead of the phenomenon of the fireflies light. The schema of flashes is frequently unique for specific types. The techniques’ results were then compared by four parameter, i.e., correlation coefficient (R2), root mean square errors (RMSE), Nash–Sutcliffe (NES) and Geometric mean error ratio (GMRE).
Results and Discussion: The correlation coefficients of soil characteristic factors with CEC were analyzed through correlation matrix analysis. According to this analysis, the factors which had insignificant influence on the CEC were excluded. The clay, silt, sand and organic matter content were selected as input data. The parameter of the best deployment for MLP network could be used to predict CEC in the studied site. This model comprised 4 neurons (sand, silt, clay percentage and OM) in input layer. The optimum number of neurons in hidden layer was estimated to be 5. Additionally, the most efficient activity function in hidden layer was Axon sigmoid. Results showed that three CEC models performed reasonably well. ANN-FA model had the highest R2 (0.94), lowest RMSE (1.31 Cmol+ Kg-1) and highest Nash–Sutcliffe coefficient (0.53) in training stage and high R2 (0.97), lowest RMSE (1.06 Cmol+ Kg-1) and highest Nash–Sutcliffe coefficient (0.59) in test stage. ANN-GA model had also higher R2 (0.91), lower RMSE (1.77 Cmol+ Kg-1) and higher Nash–Sutcliffe coefficient (0.45) in training stage and higher R2 (0.93), lower RMSE (1.50 Cmol+ Kg-1) and higher Nash–Sutcliffe coefficient (0.48) in test stage indicating good performance of the model as compared with ANN models. The results showed that both ANN and Hybrid algorithm methods performed poorly in extrapolating the minimum and maximum amount of CEC soil properties data. In addition, the comparison of ANN-FA, ANN-GA results with ANN models revealed that ANN-FA was more efficient than the others.
Conclusions: The results of present study illustrated that ANN model can predict CEC with acceptable limits. Therefore, FA and GA algorithms provide superior predictive performance when is combined with ANN model. Firefly algorithm as a new method is utilized to optimize the amount of the weights by minimizing the network error. Final results revealed that this suggested technique improves the modeling performance.
Ali Barikloo; Parisa Alamdari; kamran Moravej; Moslem Servati
Abstract
Introduction: In recent decades, the most important issue for agricultural activities is maximizing the productions. Today, wheat is grown on more lands than any other commercial crops and continues to be the most important food grain source for humans. Sustainable agriculture is a scientific activity ...
Read More
Introduction: In recent decades, the most important issue for agricultural activities is maximizing the productions. Today, wheat is grown on more lands than any other commercial crops and continues to be the most important food grain source for humans. Sustainable agriculture is a scientific activity based on ecological principles with focus on achieving sustainable production. It requires a full understanding of the relationships between crop production with soil and land characteristics. Furthermore, one of the objectives of sustainable agriculture is enhancing the agricultural production efficiency through applying proper management, which requires a deep understanding of relationships between production rate, soil and environment characteristics. Hence, the first step in this process is finding appropriate methods which are able to determine the correct relationships between measured characteristics of soil and environment with performance rate. The aim of this study was evaluating the performance of neuro-genetic hybrid model in predicting wheat yield by using land characteristics in the west of Herris City.
Materials and Methods: The study area was located in the northwest of east Azarbaijan province, Heris region. In this study, 80 soil profiles were surveyed in irrigated wheat farms and soil samples were taken from each genetic horizon for physical and chemical analyses. In this region, soil moisture and temperature regimes are Aridic border to Xeric and Mesic, respectively. The soils were classified as Entisols and Aridisols. We used 1×1 m woody square plots in each profile to determine the amounts of yield. Because of nonlinear trend of yield, a nonlinear algorithm hybrid technique (neural-genetics) was used for modeling. At first step, the average weight of soil characteristics (from depth of 100 cm) and landscape parameters of selected profiles were measured for modeling according to the annual growing season of wheat. Then, land components and wheat yield were considered as inputs and output of model, respectively. For this reason, genetic algorithm was investigated to train neural network. Finally, estimated wheat yield was obtained using input data. Root mean square error (RMSE) and Coefficient of determination (r2), Nash-Sutcliffe Coefficient (NES) indices were used for assessing the method performance.
Results and Discussion: The sensitivity analysis of model showed that soil and land parameters such as total nitrogen, available phosphorus, slope percentage, content of gravel, soil reaction and organic matter percentage played an important role in determining wheat yield in the studied area. The soil organic matter and total nitrogen had the highest and lowest correlation with wheat yield quantity and quality, respectively, indicating the total nitrogen was the most important soil property for determination of wheat yield in our studied area. We found that network learning process based on genetic algorithms in the learning process had lower error. The findings showed that beside of confirming the desired results in the case of using sigmoid activation function in the hidden layer and linear activation function in the output layer of all neural networks, it is demonstrated that the proposed hybrid technique had much better results. These findings also confirm better prediction ability of neural network based on error back propagation algorithm or Levenberg-Marquardt training algorithm compared to other types of neural network confirms.
Conclusion: Using nonlinear techniques in modeling and forecasting wheat yield due to its nonlinear trend and influencing variables is inevitable. Recently, genetic algorithms and neural network techniques is considered as the most important tools to model nonlinear and complex processes. Despite the advantages of these techniques there are a lot of weaknesses. Imposing specific conditioned form by researchers in the techniques of genetic algorithms and stopping neural network learning at the optimal points are the main weaknesses of these techniques, while searching for global optimal point and not imposing a specific functional forms are the robustness of genetic algorithm techniques and neural networks, respectively. Results of this study indicated that the proposed hybrid technique had much better results. Correlation coefficient (0.87) and average deviation square error (473.5) were high and low, respectively. It can be concluded that the surveyed soil properties have very strong relationship with the yield. Implementation of appropriate land management practices is thus necessary for improving soil and land characteristics to maintain high yield, preventing land degradation and preserving it for future generations required for sustainable development.