Irrigation
H. Saeediyan; Hamid Reza Moradi
Abstract
Introduction: Erosion and sediment production studies along with other natural resources studies in decision making and success and efficiency of watershed plans are of great importance. In order to plan and be aware of the destructive situation of the watershed, it is necessary to have erosion and sediment ...
Read More
Introduction: Erosion and sediment production studies along with other natural resources studies in decision making and success and efficiency of watershed plans are of great importance. In order to plan and be aware of the destructive situation of the watershed, it is necessary to have erosion and sediment production from each watershed. The information about sediment load of basins can show the prospect of erosion. Sediment scatter from the soil surface by the impact of raindrops and shear force of runoff and is transported to downstream by spraying from raindrops and mainly by runoff. Also, the stress characteristics of soil particles are important in the process of effective transport. In recent decades, soil erosion has been intensified due to the human interference, inappropriate land management and land use. This is much more important in developing countries, because soil erosion is a serious risk to sustainable development in these countries. Soil erosion on farmland occurs due to the interaction between nature and human activities that have been being intensified in recent years. Estimation of sedimentation in watersheds, dealing with sediment accumulation risks in water structures and reservoirs of dams are the main objectives in water resources management that leads to sustainable development. One of the most erodibility of Iran is the Gachsaran formation. Gachsaran formation is about 1600 meters thick. A viewpoint of lithology is consisting of salt, anhydrite, colorful lime, and some shale. Gachsaran formation age is lower Miocene. Materials and Methods: In this study, in order to determine sediment estimation by using different erosion components in different land uses of Gachsaran formation deposits, a part of Kuhe Gypsum watershed of Izeh city with an area of 1202 hectares was selected. In this study, the relationship between produced sediment and different erosion components such as runoff,soil permeability,runoff, and erosion threshold in different land uses of Gachsaran formation was determined by multivariate regression. Then, sampling of erosion different components was done at 6 points with 3 replicates and at rainfall different intensities of 0.75, 1 and 1.25 mm/min in three land uses of rangeland, residential area and agricultural using rain simulator. SPSS and EXCEL softwares were used for statistical analysis. Results and Discussion: The results showed that sediment estimation using different erosion components presents acceptable results and can be used for other watersheds. The results also showed that in sediment estimation by erosion different components, runoff and erosion threshold had the most positive and negative effect and in eight cases played a role in modeling. Then, soil permeability has the average effect of positive and negative and has played a role in modeling in seven cases. In addition, runoff has not played a role in modeling in any of the three different land uses and intensities of precipitation. Conclusion: Sediment estimation by erosion different components, the runoff and erosion threshold had the highest effect. Soil permeability had a moderate influence and runoff rate has not played a role in modeling in any of different land uses and precipitation intensities, it indicated the much more important role of runoff and erosion threshold and soil permeability in this modeling method in estimating sediment production. Finally, sediment estimation method by using erosion different components showed that it could be more applicable in sediment estimation in hard-to-reach watersheds in the future and be more effective in soil conservation and erosion reduction with appropriate and rational estimates in more appropriate implementation of watershed projects.
Sheler Eskandari; kamal nabiollahi; Ruhollah Taghizade-Mehrjardi
Abstract
Introduction: Soil organic carbon is one of the most important soil properties which its spatial variability is essential to crop management, land degradation and environmental studies. Investigation of variability of soil organic carbon using traditional methods is expensive and time consuming. Therefore, ...
Read More
Introduction: Soil organic carbon is one of the most important soil properties which its spatial variability is essential to crop management, land degradation and environmental studies. Investigation of variability of soil organic carbon using traditional methods is expensive and time consuming. Therefore, one of the ways to overcomethis challenge is using digital soil mapping whichcan predict soil characteristics using auxiliary data and data mining methods. Previous studies have shown that digital elevation model (DEM) and remotely sensed data are the most commonly useful ancillary data for soil organic carbon prediction. Artificial neural network (ANN) is a common technique of digital mapping. The region of Marivan in Kurdistan province is one of the forested areas inIran. In recent decades, due to population growth and the increased need for food, thisforested area has been threatened and some parts are now cultivated. Therefore, accurate mapping of soil organic carbon so as to improve land management and prevent land degradation is necessary. The purpose of this research wasusing ANN model and auxiliary data to mapsoil organic carbon.
Materials and Methods: The study area is located in Kurdistan Province, Marivan(cover 20000 ha). Soil moisture and temperature regimes are Xeric and Mesic, respectively. Elevation also varies between 1280 and 1980 m. The main land use typesarecropland, forestland and wetland. The major physiographic units are piedmont plain, mountain and hills with flat to steep slopes. Using stratified random soil sampling method, 137 soil samples (for the depth of 0-30 cm) were collectedand soil organic carbon were measured. In the current study,auxiliary data were terrain attributes and ETM+ data of Landsat 7. Terrain parameters (including 15 factors), bands 1, 2, 3, 4, 5, 6, 7, brightness index (BI) and normalized difference vegetative index (NDVI) were computed and extracted using SAGA and ArcGIS software, respectively. ANN model was applied to establish a relationship between soil organic carbon and auxiliary data. Finally, soil organic carbon weremappedusing ANN and validated based oncross validation method. Three different statistics were used for evaluating the performance of model in predicting soil organic carbon, namely the coefficient of determination (R2), mean error (ME) and root mean square error (RMSE).
Results and Discussion: Based on sensitive analysis of ANN model, auxiliary variables includingwetness index, index of valley bottom flatness (MrVBF), LS factor, NDVI index, and B3were the most important factors for prediction of soil organic carbon. The quantities of R2, ME and RMSE calculated for ANN model were0.80, 0.01 and 0.67, respectively.Soil organic carbon content ranged from0.26 to 8.45 % and the highest contentwasobserved in forestland with hill and mountain physiography and wetland around the lake. It is noteworthy that the differences fordifferent land uses were not statistically significant. Auxiliary data including wetness index, index of valley bottom flatness, LS factor, and B3 in different land uses had statistically significant difference (p
Mahmoud Enjavinejad; Hamidreza Owliaie; Ebrahim Adhami
Abstract
Introduction: Magnetic susceptibility measurements can serve a variety of applications including the determination of changes in soil-forming processes, the study of parent material effects, understanding sedimentation processes, soil drainage conditions, and even the separation and identification of ...
Read More
Introduction: Magnetic susceptibility measurements can serve a variety of applications including the determination of changes in soil-forming processes, the study of parent material effects, understanding sedimentation processes, soil drainage conditions, and even the separation and identification of soil delineations. The technique is especially attractive since it is relatively rapid, non-destructive, and can be applied to both intact and disturbed samples of soils. Magnetic susceptibility is defined as the ratio of the total magnetization induced in a sample relative to the intensity of the magnetic field that produces the magnetization. Iron oxides are the most abundant of the metallic oxides in most soils; they are present in all climatic regions, in several mineral forms, and at variable concentrations. Typically, selective dissolution techniques are used to quantify the relative proportion of Fe oxides. Due to the large contribution of iron-bearing minerals to magnetic susceptibility, their presence in most soils, and the effects of the biophysical environment on them, pedologists have been paying growing attention to magnetic susceptibility as a means to understand soil and landscape processes. The effects of topography on χ were studied for example by many workers. They found that soil susceptibility changes with the position of a soil profile on a slope. Texture and drainage class assumed to be the main reasons. The soils of the Beshar Plain formed on the relatively same parent materials and are mainly affected by topography and land use. The objective of this study was to examine the role of topography and land use on pedogenic processes and their relation to soil χ, as well as, profile distribution of secondary Fe oxides, and the χ profiles.
Materials and Methods: This study was conducted on the Beshar Plain, Kohgilouye Province, in southwest of Iran. Physiographically this plain comprises hill, piedmont plain, river traces, and plateau. Eleven representative pedons were dug along a transect crossing the main physiographical units. Five pedons demonstrated aquic soil moisture regime. The mean annual temperature and precipitation at the site was 14.7°C and 800 mm, respectively. Soil moisture and temperature regimes of the study area were xeric and thermic, respectively. The soils were classified according to soil taxonomy and WRB. The soil pH was measured in a saturation paste and electrical conductivity (EC) in a saturation extract. Cation exchange capacity (CEC) was determined using sodium acetate (NaOAc) at a pH of 8.2. Soil texture was determined using the pipette method. Calcium carbonate equivalent (CCE) was measured by acid neutralization. Organic carbon was determined by wet oxidation method. Pedogenic Fe (Feo) and pseudo-total Fe (Fen) were extracted with the CBD method and HNO3, respectively.The magnetic susceptibility of bulk samples was determined using a Bartington MS2 meter equipped with the MS2B Dual Frequency sensor, capable of taking measurements at both low (χlf at 0.46 kHz) and high (χhf at 4.6 kHz) frequencies.
Results and Discussion: The soils were classified as taxonomic orders of Entisols, Mollisols, Inceptisols and Alfisols, according to the world reference base for soil resources (WRB) as reference soil groups of Kastanozems, Regosols, Gleysols, Luvisols, Fluvisols and cambisols. The dominant pedogenic processes in the soils were the accumulation of organic matter, the leaching of carbonates, and formation of calcic horizons, the mobilization of clay and development of argillic horizons. The results indicated that the soils are affected mainly by topography, drainage class and land use. Most pedons exhibited maximum of χ at the soil surface, suggesting preferential loss of diamagnetic components, as well as more pedogenic formation of antiferromagnetic minerals. Magnetic measurements showed that the χ values of aquic soils were much lower than those of non-aquic soils (43%). The highest value of χ was noted in pedons which are located on stable physiographic units and the lowest belong to those which are located on river lower terraces. Fed and fen was also positively correlated with χ in the soils studied. Aquic condition also decreased Fed and Fed/Fen, 44 and 65 percent, respectively with no clear effect on Fen. Low to medium amounts of χfd in the studied soils indicated that superparamagnetic gains are not too dominant in the soils. Higher values of χfd were typically observed in the A horizons than at depth, suggesting a greater proportion of ultrafine grains at soil surface. A positive correlation existed between χfd and χ in the soils.
Saeideh Bardsirizadeh; Isa Esfandiarpour Borujeni; Ali Asghar Besalatpour; Peyman Abbaszadeh Dahaji
Abstract
Introduction: Aggregate, as the basic unit of soil structure,represents a collection of primary particles which their adherence to each other is more than their connection to environ soilparticles. Aggregate stability is a highly complex parameter influencing a wide range of soil properties, including ...
Read More
Introduction: Aggregate, as the basic unit of soil structure,represents a collection of primary particles which their adherence to each other is more than their connection to environ soilparticles. Aggregate stability is a highly complex parameter influencing a wide range of soil properties, including carbon stabilization, soil porosity, water infiltration, aeration, compatibility, water retention, hydraulic conductivity andresistance to erosion by water and overland flows. Maintaining high stability of soil aggregate is essential for preserving soil productivity, minimizing soil erosion and degradation and thus minimizing environmental pollution as well. Nevertheless, aggregate stability is described as one of the soil properties that can serve as an indicator of soil quality.The main purpose of this study is to determine the most important component of soil aggregate (macro and/ormicro) in estimating the soil structural stability in the Rabor region, Kerman province, using geostatistical method.
Materials and Methods: Ninetysurface soil samples (0 to 10 cm) were taken on a 200 m square sampling grid in the study area for the geostatistical studies.After air drying the soil samples and passing them through a 4 mm sieve, the percentage of aggregates belong tothree parts of total, macro, and micro classes and aggregate staility were calculated in both dry and wet conditions.Some stability indices were calculated and their spatial variabilities were investigated using two variography and estimation stages methods. Finally, the kriged map of each aggregate stability indicator was produced. To determine the compatibility of kriged maps of the soil aggregates stability indices calculated for the macro and micro aggregates with aggregates stability index (i.e., AS index) calculated forthe total aggregates, the overall accuracy related to each aggregate component (i.e., macro and micro) was calculatedafter creating an error matrix.
Results and Discussion: The results showed that total aggregate stability in the dry condition and macro aggregate stability in the wet condition had the lowest and highest coefficients of variability,respectively. The highest percentage of total aggregate stability (i.e., 89.90 %)was observed in the north and southeast positions of the study areain the dryconditionwhich had the highest amount of organic matter(i.e., 2.30 %). Also, the variograms of all investigated variables were exponentially and their ranges were varied between 380 to 450 m. Although the obtainedranges were different, a sampling distance more or less equal to 420 m is reasonable to study the most of the variables in the area. This can be a good indicator to decrease the sampling tasks for monitoring of these parameters in future.An overall look at the obtained root mean square standardized error (RMSSE) values indicated a high correlation between the measured and estimated values of all investigatedvariables (except for macro aggregate stability in the wet condition). However, all variables had a strong spatial correlation class. The percentage of overall accuracy obtained from crossing the total and macro aggregate kriged maps in the dry condition (i.e., 51.75 %), was more than its percentage for similar maps in the wet condition (i.e., 32.17 %). In return, the percentage of overall accuracy obtained from crossing the total and micro aggregate kriged maps in the wet condition (i.e., 17.31 %)was greater than its percentage for the mentioned maps in the dry condition (i.e., 10.93 %). Because of macro aggregate sensitivities to the amount of pressure imposed on them (as in the wet sieving method, the aggregates are under pressure caused by water energyin addition to tensions related to mechanical motion of sieving), the conformities of above two mentioned maps were less than those in the dry sieving method.
Conclusions: In general, the soil aggregates stability depends strongly on the amount of pressure imposed on them. Besides, the study of spatial variability of macro and micro aggregate stabilities and relative effects of each on the soil structure stability can be useful for choosing proper land management activities in future studies. According to theeffect of aggregation on nutrient cycling, capture, storage and water movement, and also other soil characteristics affecting plant growth and sustainable agriculture on one hand, and the effect of organic matter on aggregation on the other hand, it can be concluded thatall human activities that have a role in reducing or removing organic matter from the soil (e.g., grazing, deforestation, and intensive cultivation etc.) may reduce soil aggregate stability and finally can jeopardize human life in a near future.
Ali Afshari; H. Khademi; shamsollah Ayoubi
Abstract
Introduction: Heavy metals are found to be one of the major environmental hazardous contaminants, for human health, animal life, air quality and other components of environment. They can affect geochemical cycles and accumulate in animal tissues since physical processes are not able to remove them, so ...
Read More
Introduction: Heavy metals are found to be one of the major environmental hazardous contaminants, for human health, animal life, air quality and other components of environment. They can affect geochemical cycles and accumulate in animal tissues since physical processes are not able to remove them, so they are consistent in long term. The analysis of the total concentration of heavy metals in soil may provide information about soils enrichment but in general, it is widely used to determine the potential mobility of heavy metals in environmental behavior under chemical forms of metals in soils. Heavy metals existat several phases including water-soluble, exchangeable, bounded to organic matter, bounded to carbonates, bounded to Fe-Mn oxides, secondary clay minerals and residual fraction within primary minerals network. There is a dynamic equilibrium between different fractions of elements in soil. The main objectives of the present study were a) The analysis of the total concentration of heavy metals such as Fe, Mn, Ni, Cr, Co, Pb, Zn, Cd and Cu and b) The fractionations of heavy metals and identification of controlling factors to distribution and behavior of heavy metals in soils at different land uses.
Materials and Methods: The study was performed at central area of Zanjan province (Iran). The study area was over 2000 km2 in coordinates 20´ 36° to 41´ 36° E and 19´ 48° to 53´ 48° N. The average altitudes were over 1500 meters above sea level. The major land uses of the study area included agriculture (AG), rangeland (RA) and urban (UR). Sample collection was done based on the random grid method in August 2011. Surface soil samples (0-10 cm depth) were taken from grid centers included 137, 77 and 27 samples from AG, RA and UR land uses, respectively. The samples were digested in Nitric acid 5 normal (Sposito et al., 1982) and total concentration of Pb, Zn, Ni, Mn, Cu, Cr, Fe and Co were measured by Perkin-Elmer: AA 200 atomic absorption instrument and cadmium was measured by atomic absorption equipped with Rayleigh: WF-1E graphite furnace. 75 soil samples were selected, DTPA-extraction and sequential extraction were performed and physiochemical characteristics of these samples analyzed. To extract the metals by DTPA, the method developed by Lindsay and Norvell, (1978) was used and sequential extraction was done by Tessier et al., (1979) method. All statistical parameters were calculated using SPSS 16.0 software, and mean comparison (mean separation) was carried out using Duncan test at probability level of 5%.
Results and Discussion: The results indicated that heavy metals concentrations and patterns were evidently affected by different land uses. Co concentration was between 17.0 – 35.7 mg/kg and had the lowest total coefficient of variation (14%). The maximum total Cr and Ni values were measured in AG land use (26.1 and 52.6 mg/kg, respectively) and lowest was in UR land use (17.0 and 37.2 mg/kg, respectively). The highest total average value of Mn was found in RA (698.9 mg/kg) and the lowest in UR (629.1mg/kg) land use. The highest Fe concentrations were measured in AG and RA land uses (17.2 and 17.0 g/kg, respectively) and the lowest in UR land use (14.0 g/kg). The maximum Concentration of total Cd was observed in UR land use (2.47 mg/kg) and its minimum values were found in RA and AG (0.83 and 0.75 mg/kg, respectively) in the study area. In UR land use, Cu and Zn were more significant than AG and RA land uses. Pb variation was the same as Zn so that its increased concentration was found in urban land use (90.2 to 1357.5 on average 220.1 mg/kg). The highest Pb values were measured in UR land use (220 mg/kg) while the lowest concentrations were found in RA and AG land uses (80.6 and 69.0 mg/kg, respectively).
Different elements showed various fractional distribution in different land uses. The highest Co percentage was related to residual fraction at all land uses, with values up to 48.4%, 54.0% and 48.1% in AG, RA and UR land uses, respectively. Ni fractionation had approximately the same pattern with Co in all factions and land uses, except exchangeable fraction of Ni that showed the lowest percentage in all land uses. The dominant fraction of Cu was residual fraction with the amounts of 73.3% 76.0% and 61.9% in AG, RA and UR land uses, respectively. The second dominant fraction in UR and AG land uses was related to that was bounded to OM, with 16.5% and 10.1%, respectively. Zn distribution in the AG and RA land uses had the same trend: Residual>bounded to Fe-Mn oxides>bounded to OM>bounded to carbonate>exchangeable fraction. Whereas, Zn distribution showed different trend in UR land use as bounded to Fe-Mn oxides>residual>bounded to carbonate>bounded to OM>exchangeable fraction. Pb distribution was different in each land use. Pb showed similar distribution to Zn in UR. In AG and RA land uses residual fraction of Pb was measured as highest value while other fractions of Pb had these distributions: Pb bounded to carbonate>bounded to Fe-Mn oxides>exchangeable >bounded to OM fraction in AG land use and Pb bounded to Fe-Mn oxides>bounded to OM>bounded to carbonate>exchangeable fraction in RA land use.
Conclusion: Based on the results of this study, Cr, Co, Ni, Mn and Fe magnitudes are uneven in soils. The total heavy metal concentrations fractionation can provide information on the contaminant metals sources. High levels of exchangeable fractions, acid soluble and easily reducible perhaps indicates anthropogenic activities. Naturally, Chemicals are associated to resistant soil fractions such as oxy hydroxides, organic matter and sulfides. In soil fractionation, the contribution of each fraction in soil was a function of metal type and land uses. Those metals were affected by anthropogenic activities such as lead, zinc, and partly copper, showed the highest percentage in the fraction that influenced by external input sources. Those were characterized by lithogenic origin (cobalt and nickel) was mainly found to be highest in residual fraction. However, in all metals, those fractions affected by anthropogenic activities (non-resistant fractions) were much more in urban land use than agriculture and rangeland ones.
Ahmad Fakheri Fard; Vahid Nourani; Faegheh Niazi
Abstract
Introduction: The influence of urbanization, as one important form of land use, on runoff and floods within watersheds has been a major topic of research during the past few decades. Urbanization affects the hydrology processes of a watershed by replacing the vegetated land cover with impervious surfaces. ...
Read More
Introduction: The influence of urbanization, as one important form of land use, on runoff and floods within watersheds has been a major topic of research during the past few decades. Urbanization affects the hydrology processes of a watershed by replacing the vegetated land cover with impervious surfaces. This can have a substantial effect on the hydrological response of a watershed to rainfall, potentially resulting in faster response, greater magnitude of river flow, higher recurrence of small floods and reduced base-flow, and groundwater recharge. The direct runoff hydrograph generated by rain falling on a watershed reflects the characteristics of both the effective rain hyetograph and the relevant surface features that control the runoff generation and surface-water flow processes.
Materials and Methods: In this study, the effect of land use investigated using GUHCR model and adjusted GUHRLU model is presented. These models and Nash’s conceptual model used to investigate land use impacts for a small, well instrumented watershed consisting of two different land uses sub-watershed in the city of Sierra Vista, Cochise County, Southeastern Arizona. Geomorphological factors for the sub-watersheds extracted by GIS. In this study 13 storm events occurring on both sub-watersheds were selected to examine the proposed model’s performance. Nine events were selected for model calibration. The remaining four events were used to examine the simulated hydrographs for the outlet and the interior natural sub-watershed. The model parameter ( ) was estimated for each event using the moment method and the average of the calibrated values was used for evaluation of the model. The model's performance demonstrated through four popular criteria (i.e. The Nash–Sutcliffe efficiency (NE), the Correlation Coefficient (R), the ratio of the absolute error of peak flow (EP) and the ratio of the absolute error of hydrograph’s volume (Ev)) using available hydro-geomorphological data.
Results and Discussion: The results show that although all studied models forecast the outlet hydrographs with acceptable accuracy, only the presented GUHRLU model shows appropriate results at sub-watershed outlet considering the effect of land use. Clearly, accounting for land use properties in the model formulation leads to improved efficiency at the internal sub-watershed. The Nash model as a lumped model, calculates the hydrography just at the watershed outlet without any information about the hydrological behavior of the interior watershed. Therefore, internal hydrography estimation is impossible via this model. In general, urban runoff tends to have a sharper rising limb and higher peak values while runoffs in natural watersheds have smaller peak values and the rising limb climbs more slowly. The hydrographs show that the overall shapes of the urban sub-watershed hydrographs are similar to each other, while those in the natural sub-watershed tend to be more different, as expected. Simultaneous consideration of geomorphological and land use parameters in the formulation of the proposed model (GUHRLU) provides this capability. As indicated by Ep and Ev, the error of peak flow and the volume of hydrographs show acceptable accuracy. It can be noted that some events show high values of error of peak flows (Ep), however, the model results in small values of Ev that is of great importance in water resource management. Note that, the performance values obtained for the watershed outlet were, for most events, higher than those of the internal sub-watershed outlet in both formulations, which may be due to the use of outlet hydrographs for calculating the model parameter ( )., This might also be due to less uncertainty in urban watersheds where runoff to rainfall ratios is much larger than in the natural sub-watershed. The GUHCR model has slightly better performance at watershed outlet, but it is unable to detect land use variability in its model formulation and so to estimate the internal watershed hydrographs appropriately. Overall, peak discharge and runoff volume for the natural sub-watershed was over-estimated via GUHCR model. The average values for Nash-Sutcliffe criteria at the internal watershed outlet for GUHCR and GUHRLU models are 0.47 and 0.78 respectively. Over 40% improvement is achieved in simulated peak discharge and runoff volume at interior watershed outlet using GUHRLU in compared with GUHCR model.
Conclusion: GUHRLU model considers not only the geomorphologic properties of the watershed, but also the land use variation of the sub-watershed in parameter formulation. This model can also reflect the hydrological conditions of the internal parts of the watershed with divergent land uses. The GUHRLU model is able to improve the efficiency of geomorphological rainfall-runoff simulations at the interior part of the study watershed, located in southeastern Arizona, by taking into account land use. Consideration of land use in the model leads to acceptable results at both watershed and interior sub-watershed outlets, particularly for watersheds like the studied watershed where different land uses sub-watersheds have. The overall efficiency of prediction was slightly poorer for the internal sub-watershed than for the outlet. Application of three models reveals that only the presented GUHRLU model shows appropriate results at sub-watershed outlet in which the land use variation is considered in the model formulation.
R. Karimi; M.H. Salehi; Z. Mosleh
Abstract
Nowadays, changing the rangelands to agriculture and garden is common. To investigate the impact of land use change on the soils type and clay mineralogy, four land uses including rangeland with poor vegetation, agricultural land, new and old apple orchards were selected in Safashahr area, Fars province. ...
Read More
Nowadays, changing the rangelands to agriculture and garden is common. To investigate the impact of land use change on the soils type and clay mineralogy, four land uses including rangeland with poor vegetation, agricultural land, new and old apple orchards were selected in Safashahr area, Fars province. In each land use, three soil profiles were excavated and described and one profile was considered as representative. After required physical and chemical analyses, they were classified according to Soil Taxonomy (ST) and the World Reference Base for Soil Resources (WRB). Selected surface and subsurface samples were also collected for clay mineralogy studies. Results showed that changing land use did not have significant effect on soil type and clay minerals and all soils consist of mica, chlorite, smectite, kaolinite and mixed layer minerals. Results demonstrated that ST is more efficient compared to WRB to classify the studied soils.
F. Fathian; S. Morid; S. Arshad
Abstract
The drawdown trend of the water level in Urmia Lake poses a serious problem for northwestern Iran that will have a negative impact on the agriculture and industry. This research investigated the possible causes of this adversity by estimating trends in the time series of hydro-climatic variables of the ...
Read More
The drawdown trend of the water level in Urmia Lake poses a serious problem for northwestern Iran that will have a negative impact on the agriculture and industry. This research investigated the possible causes of this adversity by estimating trends in the time series of hydro-climatic variables of the basin as well as tracking changes in the land use of the study area, using satellite images. Four non-parametric statistical tests, the Mann-Kendall, Theil-Sen, Spearman Rho and Sen's T test, were applied to estimate the trends in the annual time series of streamflow, precipitation and temperature at 18 stations throughout the case study. Furthermore, by using the LANDSAT satellite images of 1976, 1989, 2002 and 2011, land use classification was determined using maximum likelihood, minimum distance and mahalanobis distance methods. The results showed significant increasing temperature trend throughout the region and an area-specific precipitation trend. The trend tests also confirmed a general decreasing trend in region streamflows that was more pronounced in the downstream stations. The results showed that the classification by the maximum likelihood method wass associated with minimum error. The results of processing the images showed that the irrigated crops, horticultural and dry lands have increased during last 35 years by 412, 485 and 672 percent, respectively. But, the pasture area is decreased by 34 percent. Finally, correlation between streamflow changes with simultaneous changes in climatic variables and land use showed it is significant in case of temperature and land use; and insignificant in case of precipitation. However, the determination coefficient of land use is higher than temperature.