Keyvan Khalili; Mohammad Nazeri Tahrudi; Rasoul Mirabbasi Najaf Abadi; Farshad Ahmadi
Abstract
Introduction: Climate change in the current era is a very important environmental challenge. Our understanding of the impacts of human activities on the environment, especially those related to global warming caused by increased greenhouse gases indicates that, most probably, a number of hydro-climatic ...
Read More
Introduction: Climate change in the current era is a very important environmental challenge. Our understanding of the impacts of human activities on the environment, especially those related to global warming caused by increased greenhouse gases indicates that, most probably, a number of hydro-climatic parameters are changing. Based on the scientific reports, the average temperature of the earth has increased about 0.6 degrees centigrade over the 20th century and it is expected that the amount of evaporation continues to rise. In this case, the atmosphere would be able to transport larger amounts of water vapor, influencing the amount of atmospheric precipitations (21). Low precipitation and its severe fluctuations in the daily, seasonal and annual time scales are the intrinsic characteristics of Iran’s climates. Based on the research background, it seems that no comprehensive study has been conducted on concentration of winter precipitation in Iran. The aim of this study is to calculate the concentration and Trend of precipitation of Iranian border stations over the last half-century.
Materials and Methods: Iran with an area of over16480000 square kilometers is situated in the northern hemisphere and southwest of Asia. Almost all parts of Iran have four seasons. In general, a year can be divided into two warm and cold seasons. In this study, 18 stations were selected among more than 200 synoptic stations existing in the country, for investigating the concentration and precipitation trend.
PCI Index The PCI index has been proposed as an index of precipitation concentration. The seasonal scales of this index are calculated as equation 1(18):
(1)
Where Pi is the amount of monthly precipitation in the ith month. Based on the proposed formula, the minimum value of theoretical PCI is 8.3, indicating absolute uniformity in the precipitation concentration (i.e. the same amount of precipitation occurs every month).
Trend analysis The aim of process test is to specify whether an ascending or a descending trend exists in data series. Since parametric tests have some assumptions including normality, stability, and independence of variables, where most of these assumptions do not apply to hydrologic variables, the nonparametric methods are more preferred in meteorological and hydrological studies.
Results and Discussion: The PCI index was calculated using the monthly precipitation of the selected stations at seasonal and winter time scales over a 50-year period. This period was then divided into two 25-year sub-periods for the investigation of changes in average values of PCI (7). In the first 25-year span, the irregular precipitation distribution has been observed in the Bandarabbas station and its surroundings in winter season. In none of the studied stations, highly irregular precipitation occurred. The highest share of PCI was relatedto the precipitation average distribution class, and the northern, northwestern, and northeastern parts of the country have a uniform precipitation distribution. In winter, within the first 25-year period, the country had ideal conditions in terms of precipitation and its concentration in the mentioned regions. Within the second 25-year period, the intensity of irregular precipitation concentration decreased, as the regions that had confronted strong precipitation irregularities wereadded to regions with uniform concentration. At the seasonal scale and in winter, the country’s share of uniform distribution diminished in the second 25 years, and overall most parts of Iran have been covered by average precipitation distribution. The uniform precipitation distribution in recent years (second 25 years) has decreased in winter in such a way that no uniform distribution has been observed in the northeast of the country and uniform distribution belongedto the Caspian sea border strip, southern regions of west and east Azerbaijan stations (Urmia, Khoy and Tabriz stations) along with Kermanshah, Sanandaj, and Zanjan stations.
Trend analysis of the PCI In winter the Abadan, Ahwaz, Bandarabbas, Birjand, Kermanshah, Sanandaj, Urmia and Zahedan stations experienced an insignificant decreasing trend in PCI. At other stations, an insignificant increasing trend was observed in the PCI series. Overall, 9 out of 18 considered stations, witnessed increasing PCI trend implying increased irregularities in winter precipitation.
The results of Mann-Kendall trend test for precipitation Based on the results it can be observed that in winter Ahwaz, Gorgan, Khoramabad, Kermanshah, Ramsar, Rasht and Sanandaj experienced an insignificant decreasing trend in precipitation. In Khoy, Sanandaj, Tabriz, Urmia, Zahedan, and Zanjan stations, the decreasing precipitation trend in winter was significant. Overall, 12 out of 18 studied stations have been afflicted with a decreasing precipitation trend in winter.
Conclusion: Precipitation Concentration Index (PCI) is an index for determining the precipitation variations in a certain region and PCI analysis can reveal the accessibility to water in an environment. In this study, the PCI was used to analyze the precipitation concentration at two annual and seasonal time scales throughout the Iran (from 1961 to 2010). The PCI zoning results at the seasonal scale demonstrated that precipitation concentration had the same trend within the two 25-year sub-periods. These results also revealed a high PCI in provinces with low precipitation such as Zahedan. These stations, according to Oliver (18) classification, have irregular and sporadic precipitation duringwinter. Overall, the PCI analysis at the seasonal scale indicated that the regions covered by polar-continental, Europe-originated polar-continental and North Atlantic ocean-originated polar-continental have the best precipitation concentration throughout the country. The results of this index provided valuable information for water resources managers in regions with low-precipitation, consistent with research by Gozzini et al (7). The results of modified Mann-Kendall (MMK) test for PCI in Iran revealed a decreasing trend over the last 50 years. Based on the obtained results in winter, the Khoy, Sanandaj, Tabriz, Urmia, Zahedan, and Zanjan stations experienced a significant decreasing trend. The existence of an increasing trend in PCI albeit insignificant reveals changes in Iran's winter precipitations confirmed by Mann-Kendall test for precipitations in 18 studied stations. Overall, it can be concluded that the decreasing trend in Iran's winter precipitation has resulted in increasing PCI and thereby increased irregularities in winter precipitations, especially in winter season.
Mohammad Nazeri Tahrudi; Keivan Khalili; Farshad Ahmadi
Abstract
Introduction: Climate change has been one the most important subject in studies in the recent decades. Precipitation is an effective climatic parameter in the municipal and rural studies and in the industry, architecture, agriculture, climate and other fields. Trend analysis of average monthly and yearly ...
Read More
Introduction: Climate change has been one the most important subject in studies in the recent decades. Precipitation is an effective climatic parameter in the municipal and rural studies and in the industry, architecture, agriculture, climate and other fields. Trend analysis of average monthly and yearly rainfall investigated in many studies, but less researches probe regional rainfall analysis. In this study average yearly precipitation data measured at 31 synoptic stations of Iran in the period of 1961 to 2010 used to study regional variations of precipitation. In this order station divided to five regions by fuzzy clustering. Then, using the regional Kendall method, trend of precipitation investigated at five regions and all of Iran.
Materials and Methods: Iran with an area of over 16480000 square kilometers is situated in the northern hemisphere and southwest of Asia. Almost all parts of Iran have four seasons. In general, a year can be divided into two warm and cold seasons. Iran with range annual precipitation of 62.1-344.8 mm is located between two meridians of eastern 44° and 64° and two orbits of northern 40° and 25°. In order to investigate trend of precipitation two Mann-Kendall and Regional Kendall tests used. Also to evaluate the regional trends the Fuzzy method applied to clustering the studied region. The classic form of Mann-Kendall test has been used in many studies. The null hypothesis (no trends) is accepted when , otherwise H0 is rejected and its opposite hypothesis, i.e. the existence of a trend is accepted (5, 13). To estimate regional trend, the mean S statistic of Regional Mann-Kendall introduced that was presented by Douglas et al (7). Fuzzy Clustering: Clustering the studied area was done using the Fuzzy clustering method. One of the first clustering methods that were based on the objective function and Euclidean distance was presented by Dunn in 1974 and then was generalized by Bezdak in 1981.The FCM clustering algorithm is modified type of K-Means clustering algorithm. This algorithm minimizes the variance of clusters (1). The assumption of this algorithm is that data are in a vector space and the objective of this algorithm is to minimize the sum of variance in the D v cluster.
Results and Discussion: In this section the results of decreasing and increasing trend of annual precipitation of Iran can be observed in order to the data that recorded at provinces synoptic stations in the 1 and 5 percentage significance levels. Isfahan Synoptic station detected an increasing trend insignificant level of 5 percentages and the East Azerbaijan synoptic station followed a significant and severe decreasing trends. In order to investigate regional trend it is needed to use the clustering methods. After investigation the trend of mean annual precipitation at each station, the studied area was clustered using the Fuzzy clustering method and then the regional trend of Iran’s precipitation was evaluated. At first the number of different clusters investigated using the geographic properties and mean annual precipitation of the studied area and then with attention to the correlation of precipitation series in each cluster, five clusters selected to investigate the regional trend of precipitation. Overall the results showed that about 67 percentages of synoptic stations in center of provinces detected decreasing trend in the recent half century. Increasing the precipitation almost accrued in the center and northern part of Iran and other areas detected a decreasing precipitation trend in the studied data period that this subject is corresponded with Azerakhshi and et al (2). The observed trends over Iran and almost all stations and provinces were downward trend. This decreasing trend of precipitation also observed in Iran in the two past decades by Khalili et al (13).
Conclusion: Result showed decreasing trend in the west, north of Iran at each station and regional scale. Results indicated also a significant downward trend at northwest, central and south-west of the country, non-significant downward trend in western of Iran and non-significant upward trends in northern regions and Caspian Sea margins in the regional analysis. The most decreasing trend of precipitation observed at the north west of Iran because of increasing temperature and climate changes in the recent years.
Majid Montaseri; Babak Amirataee; Keyvan Khalili
Abstract
Introduction: Droughts are natural extreme phenomena, which frequently occur around the world. This phenomenon can occur in any region, but its effects will be more severe in arid and semi-arid regions. Several studies have highlighted the increasing of droughts trend around the world. The majority of ...
Read More
Introduction: Droughts are natural extreme phenomena, which frequently occur around the world. This phenomenon can occur in any region, but its effects will be more severe in arid and semi-arid regions. Several studies have highlighted the increasing of droughts trend around the world. The majority of studies in assessing the trend of time series are based on basic Mann-Kendall or Spearman's methods and no serious attention has been paid to the impact of autocorrelation coefficient on time series. However, limited numbers of studies have included the lag-1 autocorrelation coefficient and its impacts on the time series trend. The aim of this study was to investigate the trend of dry and wet periods in northwest of Iran using Mann-Kendall trend test with removing all significant autocorrelations coefficients based on SPI and RAI drought indices.
Materials and Methods: Study area has a region of 334,000 square kilometers, with wet, arid and semiarid climate, located in the northwest of Iran. The rainfall data were collected from 39 synoptic stations with average rainfall of 146 mm as the minimum of Gom station, and the highest annual rainfall of 1687 mm, in the Bandaranzali station. In this study, Standardized Precipitation Index (SPI) and Rainfall Anomaly Index (RAI) were used for trend analysis of dry and wet periods. SPI was developed by McKee et al. in 1993 to determine and monitor droughts. This index is able to determine the wet and dry situations for a specific time scale for each location using rainfall data. RAI index was developed by Van Rooy in 1965 to calculate the deviation of rainfall from the normal amount of rainfall and it evaluates monthly or annual rainfall on a linear scale resulting from a data series. Then, correlation coefficients of time series of these drought indices with different lags were determined for check the dependence or independence of the SPI and RAI values. Finally, based on dependence or independence of the time series values, trend analysis of wet and dry periods was conducted in different stations using one of the basic or modified Mann-Kendall tests. Also, the magnitude of the trends was derived from the Theil- Sen’s slope estimator.
Results and Discussion: Time series of SPI and RAI drought indices for a given annual rainfall as an example for three stations of Marivan, Gom and Maku show that during 1991 to 1994 and from 2002 to 2007 are in wet period and during 1987 to 1990 and 1998 to 2001 are in the dry period. It is clearly show that, dry and wet periods in RAI index are more severe than SPI. Comparison the correlation between Lag-1 autocorrelation coefficients values of SPI and RAI time series and Lag-1 autocorrelation coefficients of annual rainfall data indicate that these correlations are high and about 0.97 and 0.99, respectively. This difference is due to the different classification of SPI and RAI drought indices. The results of trend analysis indicate a decreasing trend in most of stations. Also, Mann-Kendall statistic has been declining while eliminating the effect of all significant correlation coefficients of dry and wet periods. This result in both SPI and RAI indices are similar and have a high correlation with R = 0.99. According to results, west of the study area have a significant decreasing (negative) trend. The spatial distribution of dry and wet periods showed that the difference between Mann-Kendall statistics of SPI and RAI indices is minimal. Also, The results show that, the slope of the trend line based on the SPI and RAI drought indices is negative in most of stations and correlation between these two indices in determining the slope of the trend line is high. But, this correlation compared with the trend statistics of SPI and RAI time series is less.
Conclusions: In this study, first the time series of SPI and RAI time series based on annual precipitation and common quantitative classification of mentioned two drought indices were determined. Then, trends of dry and wet periods of selected stations in northwest of Iran were evaluated based on these indices using the Mann-Kendall trend test with removing all significant autocorrelation coefficients. The results from this study indicate that using Mann-Kendall test with removing all significant autocorrelation coefficients effects are essential in assessing trend in time series. Although, according to various studies available in the literature, SPI is known as more accurate than RAI in drought mitigation, but according the results of this study, can solely be used both RAI and SPI index for trend detection.
A. Araghi; M. Mousavi Baygi; S.M. Hasheminia
Abstract
Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. ...
Read More
Period and trend are two main effective and important factors in hydro-climatological time series and because of this importance, different methods have been introduced and applied to study of them, until now. Most of these methods are statistical basis and they are classified in the non-parametric tests. Wavelet transform is a mathematical based powerful method which has been widely used in signal processing and time series analysis in recent years. In this research, trend and main periodic patterns similarity in temperature and vapor pressure has been studied in Babolsar, Tehran and Shahroud synoptic stations during 55 years period (from 1956 to 2010), using wavelet method and the sequential Mann-Kendall trend test. The results show that long term fluctuation patterns in temperature and vapor pressure have more correlations in the arid and semi-arid climates, as well as short term oscillation patterns in temperature and vapor pressure in the humid climates, and these dominant periods increase with the aridity of region.