Nooshin Ahmadibaseri; A. Shirvani; mohammad jafar nazemosadat
Abstract
In this study, the artificial neural networks (ANNs) and regression models were used to downscale the simulated outputs of the general circulation models (GCMs). The simulated precipitation for 25.18 º N to 34.51 º N and 45 º E to 60 º E, geopotential height at 850 mb and zonal wind at 200 mb for ...
Read More
In this study, the artificial neural networks (ANNs) and regression models were used to downscale the simulated outputs of the general circulation models (GCMs). The simulated precipitation for 25.18 º N to 34.51 º N and 45 º E to 60 º E, geopotential height at 850 mb and zonal wind at 200 mb for 12.56° N to 43.25° N and 19.68° E to 61.87° E data sets as the predictors were extracted from ECHAM5 GCM for the period 1960-2005. The observed monthly precipitation data of Abadan, Abadeh, Ahwaz, Bandar Abbas, Bushehr, Shiraz and Fasa stations as the predictand were extracted for the period 1960-2005. The principal components (PCs) of the simulated data sets were extracted and then six PCs were considered as the input file of the ANN and multiple regression models. Also the combinations of the simulated data sets were used as the input file of these models. The periods 1960-2000 and 2001-2005 were considered as the train and test data in the ANN, respectively. The Pearson correlation coefficient and normalized root mean square error results indicated that ANN predicts precipitation more accurate than multiple regression. For the monthly time scale, the geopotential height is the best predictor and for the seasonal time scale (winter) the simulated precipitation is the best predictor in ANN based standardized precipitation principal components.
sarvin zamanzad ghavidel; K. Zeinalzadeh
Abstract
Introduction: A total dissolved solid (TDS) is an important indicator for water quality assessment. Since the composition of mineral salts and discharge affects the TDS of water, it is important to understand the relationship of mineral salts composition with TDS.
Materials and Methods: In this study, ...
Read More
Introduction: A total dissolved solid (TDS) is an important indicator for water quality assessment. Since the composition of mineral salts and discharge affects the TDS of water, it is important to understand the relationship of mineral salts composition with TDS.
Materials and Methods: In this study, methods of artificial neural networks with Levenberg-Marquardt training algorithm, adaptive neuro fuzzy inference system based on Subtractive Clustering and Gene expression programming were used to model water quality properties of Zarrineh River Basin at upstream of Boukan dam, to be developed in total dissolved solids prediction. ANN and ANFIS programs code were written using MATLAB programming language. Here, the ANN with one hidden layer was used and the hidden nodes’ number was determined using trial and error. Different activation functions (logarithm sigmoid, tangent sigmoid and linear) were tried for the hidden and output nodes and the GeneXpro Tools 4.0 were used to obtain the equation of the best models. Therefore, water quality data from two hydrometer stations, namely Anyan and Safakhaneh hydrometer stations were used during the statistical period of 18 years (1389-1372). In this research, for selecting input variables to the data driven models the stepwise regression method was used. In the application, 75% of data set were used for training and the remaining, 25% of data set were used for testing, randomly. In this paper, three statistical evaluation criteria, correlation coefficient (R), the root mean square error (RMSE) and mean absolute error (MAE), were used to assess model’s performances.
Results and Discussion: By applying stepwise method, the first significant (at 95% level) variable entered to the model was the HCO3. The second variable that entered to the model was Ca. The third and fourth ones were Na and Q respectively. Mg was finally entered to the model. The optimal ANN architecture used in this study consists of an input layer with five inputs, one hidden and output layer with three and two neurons for Anyan and Safakhaneh hydrometer stations, respectively. Similar ANN, ANFIS-SC5 model had the best performance. It is clear that the ANFIS with 0/4 and 0/7 radii value has the highest R and the lowest RMSE for Anyan and Safakhaneh hydrometer stations, respectively. Various GEP models have been developed using the input combinations similar ANN and ANFIS models. Comparing the GEP5 estimations with the measured data for the test stage demonstrates a high generalization capacity of the model, with relatively low error and high correlation. From the scatter plots it is obviously seen that the GEP5 predictions are closer to the corresponding measured TDS than other models. As seen from the best straight line equations (assume the equation as y=ax) in the scatter plots that the a coefficient for GEP5 is closer to 1 than other models. In addition to previous operation, Gene expression programming offered mathematical relationships in the stations of Anyan and Safakhane with the correlation coefficients, respectively 0.962 , 0.971 and with Root-mean-square errors, respectively 12.82 , 29.08 in order to predict dissolved solids (TDS) in the rivers located at upstream of the dam. The obtained results showed the efficiency of the applied models in simulating the nonlinear behavior of TDS variations in terms of performance indices. Overall, the GEP model outperformed the other models. For all of applied models, the best result was obtained by application of input combination (5) including HCO3, Ca, Na, Q and Mg. The results are also tested by using t test for verifying the robustness of the models at 95% significance level. Comparison results indicated that the poorest model in TDS simulation was ANN especially in test period. The observed relationship between residuals and model computed TDS values shows complete independence and random distribution. It is further supported by the respective correlations for GEP5 models (R2 = 0.0011 for Anyan station and R2 = 0.0123 for safakhaneh station) which are negligible small. Plots of the residuals versus model computed values can be more informative regarding model fitting to a data set. If the residuals appear to behave randomly it suggests that the model fits the data well. On the other hand, if non- random distribution is evident in the residuals, the model does not fit the data adequately. On the base of these results, we propose GEP, ANFIS-SC and ANN methods as effective tools for the computation of total dissolved solids in river water, respectively.
Conclusion: It can be concluded that the ANN, ANFIS-GP, ANFIS-SC and GEP models can be considered as promising tools for forecasting TDS values, based on water quality parameters. It is notable from the results that the prediction accuracy of all applied models increases by increasing the number of input combinations. With attention to the aim of current research that is presenting the feasibility of artificial intelligence techniques for modeling TDS values, it is notable that the results presented in this paper are for research purpose and applying the abstained results for real-world needs some complicated steps and building artificial intelligences methods, based on complete data and parameters maybe affected the TDS values.
B. Ababaei; V. R. Verdinejad
Abstract
In this research, replacement of hydraulic models with statistical models and artificial neural networks were studied in order to estimate the criteria of pressurized irrigation systems hydraulic performance. The Coefficient of Uniformity of Christiansen (CU) was accepted as a hydraulic performance index. ...
Read More
In this research, replacement of hydraulic models with statistical models and artificial neural networks were studied in order to estimate the criteria of pressurized irrigation systems hydraulic performance. The Coefficient of Uniformity of Christiansen (CU) was accepted as a hydraulic performance index. Using an automated algorithm, the values of this index were calculated for different combinations of inlet pressure, number and spacing of outlets, pipe roughness coefficient, inside diameter, slope, outlets nominal outflow and pressure and the exponent of the formula of outlet outflows (x) (4320 different combinations). Two different architecture of artificial neural networks were studied including a multi-layer perceptron (MLP) model and a generalize regression model (GRNN). Again, K-nearest neighbor (KNN) algorithm, as a nonparametric regression model was analyzed too. The results showed that MLP model could estimate the CU values of pressurized irrigation system laterals very closely (2-3% error) using its hydraulic and physical characteristics. The performance of GRNN model was also acceptable, especially related to the whole data set. But, the KNN algorithm was unable to predict standard deviation of CU values, although it was capable in estimating the mean value. The deviations of the KNN algorithm were the largest among all the models. The lowest values of error indices of the KNN algorithm was related to the K values of 10 and 15. The results of this study revealed the possibility of simplification of sophisticated hydraulic models by replacing the whole or some parts of these models with simpler statistical models and artificial neural networks. This is very interesting because of the complexity of hydraulic models, especially in optimization processes of irrigation systems.