Soil science
M. Gheitasi; Sh. Kiani; A. Hosseinpur
Abstract
Introduction: Large amounts of nitrogen (N) fertilizers are being applied to optimize yield in vegetable production. Nitrogen use efficiency in vegetable fields is low due to high application of N fertilizers in frequent cultivation, short growth cycles and their shallow rooting system. Nitrification ...
Read More
Introduction: Large amounts of nitrogen (N) fertilizers are being applied to optimize yield in vegetable production. Nitrogen use efficiency in vegetable fields is low due to high application of N fertilizers in frequent cultivation, short growth cycles and their shallow rooting system. Nitrification inhibitors (NI) are compounds that retard the biological oxidation of ammonium to nitrite by depressing the activity of Nitrosomonas bacteria in soil. In different studies, the positive effects of these compounds on the reduction of N losses from soil and increase of N use efficiency and crop yield have been demonstrated. The 3,4-dimethylpyrazole phosphate (DMPP) is a very popular nitrification inhibitor around the world. The efficacy of this molecule depends on climatic conditions and soil properties including of texture, pH, organic matter, moisture, temperature and mineral nitrogen. In this experiment, the effects of NI 3, 4-dimethylpyrazole phosphate on the N use efficiency of two spinach varieties were investigated in different soils.
Materials and Methods: A pot experiment was conducted in a completely randomized design with a factorial arrangement with three replications at Shahrekord University. Experimental factors were different N fertilizer sources, soil types and spinach varieties. Three N fertilizer sources consisted of urea, ammonium sulfate nitrate (ASN) and ASN plus DMPP (0.8 %). A no added N fertilizer treatment was considered as the control. The soil factor contained three different soils with different physical and chemical characteristics. The textures of the soils No. 1, 2 and 3 were loamy sand, loam and silty clay, respectively. Three selected soils were non-saline (EC1:2=0.14-0.31 dS m-1) and alkaline (pH1:2=7.9-8.0). Organic carbon and calcium carbonate equivalent (CCE) ranged from 0.26 to 0.35%, and 28.5 to 36.2%, respectively. Two spinach varieties were smooth-leaf (Giant Santos) and wrinkled-leaf (Viking). The used soils were mixed homogenously with 100 mg P kg−1 soil as triple super phosphate, 5 mg Fe kg−1 soil as Fe-EDDHA, 15 mg Zn kg−1 soil as ZnSO4.7H2O, 5 mg Mn kg−1 soil as MnSO4.H2O and 2.5 mg Cu kg−1 soil as CuSO4.5H2O. Nitrogen was applied at the rate of 150 mg kg-1 soil in two split doses before sowing and after one month. Twelve seeds were sown in 7 kg soil in plastic pots, and then placed in a greenhouse. The pots were thinned to 7 seedlings per pot after plant establishment. One week before harvesting, 10 measurements were done using a chlorophyll content meter to determine chlorophyll content index of leaves. At the end of the experiment, shoot dry weight was determined and plants were mixed and dried to measure N concentration. Finally, shoot N uptake and N use efficiency were calculated in different treatments.
Results and Discussion: In the present study, spinach plants fertilized with ASN+DMPP had a better appearance (dark green color) than those grown without DMPP. The results indicated that application of ASN with DMPP led to significant increase of leaf chlorophyll content index in comparison of ASN and urea fertilizers in all studied soils. Application of DMPP slowed down the process of ammonium oxidation to nitrite. Thus, this increase may be due to the role of ammonium in N nutrition of spinach plants treated with DMPP. This may be explained by the fact that ammonium has a positive effect on the synthesis of polyamines, cytokinins and gibberellins. The presence of these two phytohormones retarded senescence and chlorophyll degradation in plants. However, adding ASN to DMPP resulted in a significant decrease of shoot dry weight as compared with the ASN and urea fertilizers in soils No. 1 (loamy sand) and 2 (loam). In soil No. 3, shoot dry weight was not affected in plants fertilized with ASN+DMPP. Also, agronomic and physiological efficiencies of N significantly decreased by applying ASN+DMPP in comparison with ASN. It seems that application of DMPP strongly delayed the ammonium nitrification to nitrate, and consequently the soil nitrate availability appears not to be synchronized with spinach N needs. Due to short growth cycle of spinach, low availability of nitrate resulted in decreased shoot dry weight of spinach. The highest N use efficiency was observed is soil No. 2 (loam) and Giant Santos had more N use efficiency than Viking.
Conclusion: The results demonstrated that using ASN+DMPP led to yield loss, and we cannot recommend its application as a nitrogen fertilizer for spinach. However, application of ASN+DMPP is an effective strategy for improving qualitative appearance (dark green color) of spinach. Also, all studied indices were not affected in plants fertilized with ASN and urea. Therefore, application of both fertilizers is recommended for spinach production under similar conditions of the present study.
Hamid Kardan Moghaddam; Mohammad Ebrahim Banihabib
Abstract
Introduction: Due to the increase in water consumption resulting from climate change and rapid population growth, overexploitation of groundwater resources take place particularly in arid regions. This increased consumption and reduced groundwater quality is a major problem especially in arid areas of ...
Read More
Introduction: Due to the increase in water consumption resulting from climate change and rapid population growth, overexploitation of groundwater resources take place particularly in arid regions. This increased consumption and reduced groundwater quality is a major problem especially in arid areas of concern among water resources managers and planners. The use of modern simulation tools to evaluate the performance of an aquifer could help the managers and planners to decide. In this research, finite difference method was used to simulate the behavior of the quality and quantity of groundwater.
Materials and Methods: Increasing the concentration of salts in the groundwater aquifers intensifies with severe water withdrawing and causes the uplift of salt water in aquifers. This is much more severe in adjacent aquifers of saline aquifers in deserts and coastal areas. Front influx of saltwater into freshwater aquifers causes interference and disturbance in water quality and complex hydro-chemical reactions occurs in the joint border area including the process of cation, groundwater flow, the reduction of sulfate, the reaction of Carbonatic and changes in the dolomitic calcite. Sarayan Aquifer has a negative balance and the annual groundwater table drawdown of 62 cm.
In this study, Total Dissolved Solids (TDS) as a groundwater quality factor was simulated to investigate the effect of the overexploitation on the saline interface of desert aquifer using MT3D module of GMS model for a period of 5 years with time steps of 6 months. One of the most important steps of the simulation of groundwater quality is to use qualitative model to predict the groundwater level which in this study were performed by quantitative models in two steady and unsteady flow states with time steps of 6 months The four basic steps of a proper modeling of the groundwater quality are sensitivity analysis of the input parameters, calibration of the sensitive parameters of the model, validation of the time step and groundwater quality forecast for the future periods. These modeling steps were carried out for steady and unsteady states by GMS software.
Aquifer hydraulic conductivity and the specific yield of aquifers were selected as two critical parameters of quantitative model in steady and unsteady states. The model was calibrated based on these two parameters and then using pest method, the value of these parameters was finalized. In order to evaluate the response of the aquifer to different periods of droughts, the verification of the model was conducted during the ten periods. The results show that observed water level has suitable correlation with simulated water level. In the same period, the simulation of water quality for TDS parameter carried out using the results of the quantitative model. After identification of sensitive parameters in the model, calibration of the model was carried out taking into account the factor of 0.5 for the ratio of horizontal to vertical distribution, vertical diffusion length of 0.2, 1 meter for effective molecular diffusion coefficient, and 20 for longitudinal diffusion.
Results and Discussion: In the total area of the aquifer, the water demand of all sectors are supplied using groundwater resources. This water withdrawal trend exacerbated the decline in groundwater levels and reduced water quality. Also in the southern strip of the aquifer, there is a desert saline groundwater aquifer, which causes the intrusion of salt water to the aquifer and negative effects on its quality. The factors influencing the salinity of groundwater in the Sarayan Aquifer are geological formations, supplying the aquifer from salty formations in the region, evaporation from the shallow part of the aquifer especially in the southern strip that leaves salt and reducing the volume of water, existence of fine soil in the media of groundwater flow. Front influx is from saltwater desert aquifer to the Sarayan Aquifer. Due to the osmotic pressure of the soil layers in the aquifer, the pollutants transferred from the higher concentration to lower concentration and an influx of salt water into the aquifer will occur from outside of the aquifer. Since the direction of groundwater flow is from the north to the south of the aquifer and salt water intrusion is from the south to the north, the velocity of saltwater intrusion dropped so quickly water. However, overexploitation of groundwater and negative aquifer balance caused uplift of the salt water in aquifer.
Conclusion: Review of the result of forecasted TDS concentration in Sarayan Aquifer, shows an increase in TDS concentration. This increase indicates that there is no potential for more water withdrawing in the southern parts of the aquifer by urban and agricultureal sectors. The variaty of TDS changes between 712 mg/lit in the northern strip of the aquifer to 8500 mg/lit in the southern strip shows that due to the increased concentration of TDS, the border area of water users will be changed. The forecasting of the future status of aquifer water quality showed that continuing withdrawing of water intensifies salt water interference from the desert and concentration of TDS will increase during the next 5 years. To manage aquifer quality and quantity, three scenarios of water withdraw reduction were used. The results are shown restoration of the aquifer quality and quantity using these scenarios.
Therefore the result of this research shows that the management of groundwater is necessary to improve the quality of desert aquifers and prevent salt water interference from desert considering recent droughts.