reza saeidi; abbas Sotoodehnia; Hadi Ramezani Etedali; Bizhan Nazari; Abbas Kaviani
Abstract
Introduction: Estimating the actual evapotranspiration of the crops, is so important for determining the irrigation needs. Typically, the climatic, vegetative and management parameters are effective on actual evapotranspiration. If the crops are exposed to salinity, fertility and other stresses, reduce ...
Read More
Introduction: Estimating the actual evapotranspiration of the crops, is so important for determining the irrigation needs. Typically, the climatic, vegetative and management parameters are effective on actual evapotranspiration. If the crops are exposed to salinity, fertility and other stresses, reduce actual evapotranspiration and yield. The correct estimation of the actual evapotranspiration of crop will allow agricultural planners to the better agricultural water management. Previous researches show water stress and soil nitrogen deficiency (as management stresses), effect on increasing of stomatal resistance and reducing of crops evapotranspiration. Thus, goal of this study was to investigate the effect of salinity and soil nitrogen deficiency on the amount of Ks coefficient and readily available water of maize.
Materials and Methods: This study was conducted in research farm at University of Imam Khomeini International, Qazvin, Iran during June to November 2017. In this research, the effects of saline water and soil nitrogen deficiency on Maize (SC 704) evapotranspiration, were investigated. The applied treatments included irrigation with saline water (in four levels: 0.5 (S_0), 1.2 (S_1), 3.5 (S_2) and 5.7 (S_3) dS/m) and soil fertility (in four levels: nitrogen fertilizer consumption at 100 (N_0), 75 (N_1), 50 (N_2) and 25% (N_3)). The experimental design used in this research was a completely randomized block design with three replications. In this experiment, maize seeds were cultivated in the plots with Length and width of 3×3 meters. The prometer device (Model: AP4) was also used to measure stomatal resistance of maize leaf. Determining the irrigation schedule, was based on the soil moisture reached to the limit of RAW (Readily Available Water). At the same time, with increasing stomatal resistance, RAW was calculated and irrigation was done. Evapotranspiration of the under stress plants were ET_(c-adj) and evapotranspiration of S_0 N_0 treatment was ET_c. The stress factor (K_s ) is calculated by ET_(c-adj)/ET_c. The values of RAW and K_s were analyzed by SPSS software. K_s coefficient was modeled with amounts of salinity stresses and soil nitrogen deficiency.
Results and Discussion: The results of this study showed that the interaction between two factors of salinity stress and nitrogen deficiency on the K_s and RAW parameters (in level: 1%) are significant. K_s coefficient at the levels of S_1, S_2 and S_3, were 0.95, 088 and 0.77, respectively. In saline water of 0.5 (dS/m), the K_s coefficient of N_1, N_2 and N_3 were 0.98, 0.96 and 0.95, respectively. With increasing the 1(dS/m) salinity of water and 25% reduction in nitrogen consumption, decreased the K_s amount about 4.5% and 1.7%, respectively. The reason of results is that with increasing of water salinity, decreases the osmotic potential of water in the soil and the crop needs to consume more energy to obtain water. Thus, amount of crop transpiration is reduced and soil water content is remained. The linear, exponential, logarithmic, polynomial and power functions were fitted between N_i/N_0 and S_i/S_0 data. The ability of the above functions to estimate the K_s coefficient value was evaluated. The polynomial function has a good function for estimating the K_s coefficient. In the S_0، S_1، S_2 and S_3 treatments, by changing the fertility value from N_0 to N_3, amounts of RAW were 63.7, 58.7, 55.4 and 42% , respectively. Also in N_0، N_1، N_2 and N_3 treatments, with changing the salinity of water from S_0 to S_3, RAW values were 51.7, 46.3, 42.7 and 42%, respectively. Therefore, stresses that reduce crop evapotranspiration are effective on reducing the amount of RAW. In this situation, the actual water requirement of the crop is less than the potential evapotranspiration of the area.
Conclusions: Increasing water salinity and nitrogen deficiency decrease evapotranspiration of maize and increase soil water content. By calculating the stress coefficient (K_s ), it is possible to estimate the actual evapotranspiration of maize, in Qazvin. Thus, the amount of irrigation water is adjusted according to the actual water requirement of maize. Under salt stress conditions with increasing the soil nitrogen, Can be increased the K_s coefficient and evapotranspiration of maize. Therefore, calculating the crop's water requirement based on the existence of strtesse, it will help to saving water.
Somayeh Sefidgar; Mojtaba Barani Motlagh; farhad khormali; Esmael Dordipour
Abstract
Introduction: Soil pollution with heavy metals have become a global concern because of its damaging effects on the environment, including human health, toxicity in plants and long-term effects on soil fertility. Heavy metals stress in plants is characterized by decrease in photosynthesis, nutrient uptake, ...
Read More
Introduction: Soil pollution with heavy metals have become a global concern because of its damaging effects on the environment, including human health, toxicity in plants and long-term effects on soil fertility. Heavy metals stress in plants is characterized by decrease in photosynthesis, nutrient uptake, damaging of roots and finally plant death. Lead (Pb) is found to be the most dangerous heavy metal, responsible for reduced soil fertility and elevated environmental pollution. Lead toxicity causes the inhibition of seed germination and exerts adverse effects on growth and metabolic processes of plants, which retards plant and crop production. The overproduction of reactive oxygen species (ROS) is the best indicator for secondary stress, which results in a number of toxic effects on biochemical processes in many plant cells. The overproduction of ROS due to Pb stress brings about changes in cellular membrane permeability, which in turn damages organelles such as nuclei, mitochondria, and chloroplasts in plant cells which decreased plant growth and yield. Chemical stabilization is an in situ remediation method that uses inexpensive amendments to reduce contaminant availability in polluted soil. The aim of this study was to investigate the immobilization of lead in a calcareous contaminated soil using two types of biochar as organic and Pumice, Leca, Zeolite and Bentonite as inorganic amendments.
Materials and Methods: In order to investigate the effect of organic amendments (biochar 640°C, and biochar 420°C) and inorganic amendments (Pumice, Leca, Zeolite and Bentonite) on Pb stabilization in a contaminated soil (1500 mg/kg), a greenhouse experiment using maize plant was carried out. This experiment was conducted in a completely randomized design consisting of 6 types of amendments (Pumice, Leca, Zeolite, Bentonite, Biochar 420°C, and Biochar 640°C) and at 1% and 5% levels of each amendment (12 amendments plus 1 control). The experimental treatments were incubated for 3 months. At the end of incubation time, the potential bioavailability of Pb in non-amended and amended soils was assessed by chemical extractions, as: extraction with DTPA, with ammonium acetate and with ethylenediaminetetraacetic acid (EDTA). After the end of incubation time, the pots were transferred to a greenhouse and in each pot five maize seeds were planted and then reduced to three seedlings in each pot after germination. After 3 months, all the plants were harvested. The Pb concentration in each plant, its biomass, its chlorophyll and its antioxidant enzyme activities levels were analyzed. All statistical analyses were performed using SAS software. Means of different treatments were compared using LSD (P ≤0.05) test.
Results and Discussion: The results indicated that the addition of amendments to soils reduced the concentration of Pb extracted with DTPA and EDTA. The 5% biochar 640 had the greatest reduction effect on DTPA-extractable Pb. The smallest concentration of Pb in the leaves and root of maize plant was observed in treated soil with organic amendments (biochar 640°C, and biochar 420°C) and treated with 5% zeolite, respectively. The highest increase in plant growth parameters like SPAD value, leaf area, plant height, number of leaves per plant, dry biomass yield and dry matter of roots were observed in organic amendments compared to the control. The application of 5% amendments in soil caused a significant increase in plant height and number of leaves as compared to control. The increase in growth and biomass of zea mays L. under various amendments might be due to decreased bioavailable Pb concentrations in soil amended which may be attributed to reduced Pb toxicity through improvement of soil fertility. Also, the application of amendments resulted in a significant increase in antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), peroxidase (PX), and ascorbate peroxidase (ASP) in maize plants compared to the control. The increase of leaves enzyme activities with addition amendments may be due to a lower Pb accumulation in leaves because excess Pb generates free radicals and reactive oxygen species (ROS) those causes oxidative stress in plants.
Conclusions: The results indicated that the application of amendments were successful in lowering the potential bioavailability of Pb in the soils. The 5% biochar 640 treatment had the greatest reduction effect on extractable Pb. The application of amendments decreased the uptake and accumulation of Pb in maize plants, via the reduction of DTPA- extractable Pb. The amendments also significantly increased leaves antioxidant enzyme activities and photosynthetic pigments compared to the control.
Bahman Farhadi Bansouleh; Alireza Karimi; Hoamyoun Hesadi
Abstract
Introduction: Evapotranspiration (ET) is one of the key parameters in water resource planning and design of irrigation systems. ET could have spatial variations in a plain due to the diversity of plant species and spatial variability of meteorological parameters. Common methods of ET measurement are ...
Read More
Introduction: Evapotranspiration (ET) is one of the key parameters in water resource planning and design of irrigation systems. ET could have spatial variations in a plain due to the diversity of plant species and spatial variability of meteorological parameters. Common methods of ET measurement are mostly point based and generalization of their results to the regional level are costly, time consuming and difficult. During the last three decades, several algorithms have been developed to estimate regional ET based on remote sensing techniques. Verstraeten et al. (2008) classified remote sensing-based methods for ET estimation into four categories i) methods based on the surface energy balance, ii) Penman-Monteith equation, iii) water balance and iv) the relationship between surface temperature and vegetation indices. SEBS (Surface Energy Balance System), SEBAL, METRIC and SEBI are examples of the algorithms which is developed based on the surface energy balance approach. SEBS is developed by Su (2002) and has been evaluated by several researchers. However this algorithm has been examined in the several studies in the world,it has been used rarely in Iran. The aim of the current study was to assess the results of SEBS algorithm in Mahidasht, Kermanshah, Iran. The study area is located at the latitude of 34º 5' – 34º 32' N and longitude of 46º 31' - 47º 06' E.
Materials and Methods: A brief description of the SEBS algorithm (in Persian) as well as its procedure to calculate ET based on Landsat images were presented in this paper. All equations of the algorithm were coded in the ERDAS Imagine package software using model maker tools. Actual ET over the study area was estimated using SEBS algorithm during the growth period of grain maize in the year 2010. For this purpose, available LANDSAT TM satellite images during the growing season of maize in 2010 (25 June, 11 July, 27 July and 12 August) were downloaded free of charge from the http://glovis.usgs.gov website (last visited: 26 November 2015).
A Lysimetric study was carried out to obtain reliable amounts of ET to assess the accuracy of calculating actual ET by SEBS algorithm. Because of the absence of the weighing Lysimeters in the study area, Drainable Lysimeter was used. Since the maize was the major crop in the study area, 10 ha maize was planted on 15 May 2010 at the research farm of the Mahidasht agricultural research station. At the same time, maize was cultivated in the Drainable Lysimeter (1m*1.5m*1.5m) which was located almost in the middle of the research farm. Actual ET of maize was calculated with the Lysimeter for each irrigation interval (10 days) based on water balance equation.
The Results of the SEBS algorithm were evaluated on two levels (farm and regional). At the farm level, average of calculating ET at the pixels of research farm was compared with the average of measured ET at the Lysimeter. The absolute and relative differences between the calculated and measured values of ET was used to describe the accuracy of the algorithm. Due to the absence of regional ET measurement, maximum ET estimated by the SEBS algorithm in the plain was compared with the calculated potential crop reference evapotranspiration (ETO). ETO was calculated using the Penman - Monteith formula based on daily weather data obtained from Mahidasht weather station.
Results and Discussion: Results indicated that an average of ET in the study area increased from June to August which coincides with increasing air temperature and vegetation density in the irrigated fields of the study area. The highest and lowest values of actual ET over the study area were determined in the irrigated farms and mountainous area, respectively. The results of Lysimetric study indicated that daily actual ET of maize on 25 June, 11 July, 27 July and 12 August was 4.13, 7.74, 7.45 and 8.05 mm.day-1, respectively. The value of ET estimated by SEBS algorithm was less than actual measured ET by Lysimeter for the all mentioned dates. The maximum absolute difference between estimated ET by SEBS and measured ET with the Lysimeter was occurred on 27 July with the amount 0.34 mm.day-1. Considering the maximum relative difference of 4.56 % between calculated and measured ET, it could be concluded that estimated ET by SEBS algorithm can be acceptable.
Due to the absence of ground-based measurements of evapotranspiration at the regional level, the maximum amount of ET estimated by SEBS algorithm was compared with ETO. The highest and lowest ratio of maximum ET over ETO were calculated as 1.02 and 1.22 which are acceptable values for the crop coefficient (Kc) in the studied period. The maximum difference between estimated ET by SEBS algorithm with ETO was 1.53 mm.day-1 which is equal to 21.86% of ETO in the same date (12 August).
Conclusions: The results of the current study showed that the SEBS algorithm can estimate the actual ET of maize with the acceptable accuracy in the Mahidasht. In the absence of measured ET data at the regional level, it was difficult to have a reasonable judgment on the accuracy of the estimated values of ET by SEBS algorithm at this scale. It is recommended to do the same study on other remote sensing-based approaches of ET estimation.
J. Givi
Abstract
In addition to qualitative and quantitative land suitability evaluation, economical evaluation can be carried out as well, based on net or gross benefit per surface area unit. The present research was done to evaluate land suitability, qualitatively and economically,, by different methods for irrigated ...
Read More
In addition to qualitative and quantitative land suitability evaluation, economical evaluation can be carried out as well, based on net or gross benefit per surface area unit. The present research was done to evaluate land suitability, qualitatively and economically,, by different methods for irrigated maize, wheat, potato and barley in Shahrekord area. In this regards, qualitative land suitability class was determined by matching land characteristics with the studied crops growth requirements, using simple limitation method and ALES program. Economical land suitability evaluation was carried out, using "internal rate of return", "gross profit", "net present value" and "benefit/cost ratio" methods which are included in the ALES program. The results showed that qualitative suitability class in all of the studied land units for irrigated maize, wheat and barley is S2 and for irrigated potato in 73% of the units is S2 and in 27% of them is S3. As the "net present value" method is used, % 73 and % 27 of the land units are classified as S2 and S1, respectively for all of the studied crops. For wheat and maize, all of the land units are classified as S1, as gross profit, benefit/cost ratio and internal rate of return methods are used. For potato and barley, using gross profit and internal rate of return methods, % 73 and % 27 of the land units are classified as S2 and S1, respectively and as the benefit/cost ratio method is used, economical land suitability class in all of the land units is S1.
M. Moayeri; E. Pazira; H. Siadat; F. Abbasi; hossein dehghani
Abstract
This study was conducted to assess yield, water consumption, and water productivity of maize and the factors affecting it under farmers’ management conditions at the Karkheh River Basin, Iran, during 2006 and 2007 growing seasons. The studied farms were in Evan Plain that is located in the northern ...
Read More
This study was conducted to assess yield, water consumption, and water productivity of maize and the factors affecting it under farmers’ management conditions at the Karkheh River Basin, Iran, during 2006 and 2007 growing seasons. The studied farms were in Evan Plain that is located in the northern part of the lands downstream of the Karkheh River Dam, where summer maize is planted in 75 cm spaced rows and irrigated by furrows. During the two years of the research and considering the prevailing diversity of the sources of irrigation water (Based on the ratio), seven irrigated field units were selected as follows: two units using groundwater (wells), three units receiving surface water from irrigation network, one unit taking water directly from the river, and one unit using network and well water. In each irrigation unit, three farms were chosen with regard to irrigation and farming management. In the field trials, some physical and chemical properties of the soil, soil test for nutrition (NPK) availability, the volume of inflow applied to the field by the farmer and runoff water in each irrigation, and total crop yield was measured and maize evapotranspiration was calculated. Then, the irrigation and rain water productivity (WPI+R), water application efficiency (WAE), and maize crop water productivity (CWP) was determined for each field. Based on the two years results, the average yield of maize kernel, WPI+R , WAE, and CWP values were, 4844 kg/ha, 0.38 kg/m3, 38.6,%, and 1.01 kg/m3, respectively. The results and observations made during this study indicated that the most important reasons for low water productivity were inadequate knowledge of farmers in irrigation, plant nutrient deficiencies, and improper crop management practices.
J. Givi
Abstract
Optimal land utilization is important because of land degradation due to incorrect use and ever-increasing need for increasing yield per surface area unit. For this optimal use, crop specific land suitability evaluation is essential. The aim of this research was qualitative land suitability evaluation ...
Read More
Optimal land utilization is important because of land degradation due to incorrect use and ever-increasing need for increasing yield per surface area unit. For this optimal use, crop specific land suitability evaluation is essential. The aim of this research was qualitative land suitability evaluation for maize production in Shahrekord area and validation of the applied land suitability evaluation methods. In this regards, land suitability class was determined by matching land characteristics with maize growth requirements, using parametric method and ALES program. For model making in ALES program, simple limitation method was used, a data base including soil units, land characteristics and maize growth requirements was established in the program and then land characteristics were matched with the maize growth requirements. The results showed that as the square root formula of parametric method and the ALES program are used, most of the land units are classified as S2c. As the storie formula of the parametric method is used, because of multiplication of the suitability ratings and not due to land characteristics limitations, most of the land units are classified as S3c. The most important limiting factors for irrigated maize production in the study area are average minimum temperature and mean ratio of sunshine hours to day length of the growing cycle. In some of the land units, soil pH is considered as limiting factor as well.
S. Fallah; Fayez Raiesi
Abstract
The effects of organic and inorganic N sources on nutrient (N and P) efficiency under the water-stressed conditions have not yet been determined. Thus, a field study was conducted to determine the influence of N from different sources along with drought stress on nutrient efficiencies of maize. Main ...
Read More
The effects of organic and inorganic N sources on nutrient (N and P) efficiency under the water-stressed conditions have not yet been determined. Thus, a field study was conducted to determine the influence of N from different sources along with drought stress on nutrient efficiencies of maize. Main plots consisted of two irrigation treatments (i.e., optimum irrigation and cut-off irrigation at silking stage for two weeks), and subplots comprised N fertilizers (cattle manure: 40.8 Mg ha-1, poultry manure: 13.3 Mg ha-1, urea fertilizer: 435 kg ha-1, cattle manure + urea fertilizer: 20.4 Mg ha-1and 20.4 Mg ha-1, respectively) and control (without fertilizer). Results indicated that the imposition of water deficit and fertilizer type had a significant effect on N uptake while P uptake was significantly affected only by fertilizer type. The highest N and P uptake were obtained with poultry manure. Similarly, significant differences in N and P use efficiency and N physiological efficiency were observed between the water deficit and fertilizer type (P
Y. Abbasi; A. Liaghat; F. Abbasi
Abstract
Suitable management of water and fertilizer is one of the important factors, affecting water and fertilizer efficiency and environmental pollution. In this study, nitrate deep leaching was evaluated in a furrow irrigated experimental field in Karaj. Experiments were conducted in randomized complete blocks ...
Read More
Suitable management of water and fertilizer is one of the important factors, affecting water and fertilizer efficiency and environmental pollution. In this study, nitrate deep leaching was evaluated in a furrow irrigated experimental field in Karaj. Experiments were conducted in randomized complete blocks in free-drainage furrows having 162 m length in 12 experimental blocks. The first factor consisted of 60%, 80% 100% and 120% of required irrigation water and the second factor 60%, 80% and 100% of nitrate fertilizer requirement applied by fertigation method. Nitrogen requirement was determined based on soil analysis and applied in four stages of the crop growth: before cultivation, in seven leaves, shooting and earring stages in which the first part (before cultivation) was applied by manual distribution and other three parts by fertigation. To determine soil nitrate concentrations, soil samples were taken from depths 20, 40, 60, and 80 cm in all of treatments. After air-drying, soil samples were passed through 2 mm sieve. Then, nitrate concentration of samples were analyzed by spectra photometer. Nitrate losses through runoff were measured by sampling of outlet water. Accumulated nitrate in maize was determined by randomized sampling of plants in all treatments. Finally, to determine nitrate leaching, nitrate mass balance was made. Results showed that 120% water level treatment provided 12% water deep percolation from root zone, while 60% water level treatment resulted in 4.5% water deep percolation. Both water and fertilizer levels had pronounced effect on nitrate leaching. The highest nitrate leaching occurred in 100% fertilizer level treatment decreasing by water reduction level. In some cases such as 80% fertilizer level, water level of 60% and 80% didn’t have any effect on nitrate deep percolation. Therefore, water level selection in this situation depends on other factors such as yield. Considering maize as a plant with root depth to be about 80 cm, water and nitrate deep percolation was evaluated up to 80 cm soil depth for all treatments. 60% and 80% water levels did not provide nitrate leaching below the mentioned root zone depth.
J. Givi; M.R. Nouri
Abstract
Proper use of agricultural lands is essential because of fast growing population and water stress which occurs in arid and semi-arid regions. In this regards, land suitability evaluation and land production potential prediction are two important prerequisites for land use planning. This research was ...
Read More
Proper use of agricultural lands is essential because of fast growing population and water stress which occurs in arid and semi-arid regions. In this regards, land suitability evaluation and land production potential prediction are two important prerequisites for land use planning. This research was done to compare FAO and Wageningen models which were used in land production potential prediction for irrigated maize and to determine management level around Shahrekord city. For this purpose, first, radiation thermal production potential for irrigated maize was estimated, using FAO and Wageningen models. Then, land production potential was calculated by multiplication of soil index and radiation thermal production potential. Soil index, indicating the extent of soil limitations effective in production reduction, was calculated by the Storie and the second root formulaes. The potential, obtained by the FAO model is higher, compared with that calculated by Wageningen model. This difference is due to difference in calculation method and different forms of the models. The results showed that the land production potential is higher than the observed yield. Management level of the farmers is the origin of this difference. By using two methods, it was proved that management level in most of the land units is high. Determination coefficients of correlation analysis between land production potential and observed yield were obtained as 0.7383 and 0.7850, using FAO model, and as 0.7385 and 0.7775, using Wageningen model, respectively as Storie and second root formulas were used for calculation of soil index. This means that the land production potential and the observed yield have a significant correlation and accuracy of the used methods for estimation of land production potential is acceptable. Factors that increase the determination coefficient are discussed as well.