z
E. Karamian; M. Navabian; M.H. Biglouei; M. Rabiee
Abstract
IntroductionMany agricultural lands in Guilan province of Iran, especially paddy fields, remain uncultivated in the second half of the year due to various reasons including heavy rainfall, low soil permeability (stickiness of soil particles) and inefficiency of the existing drains. Mole drainage as a ...
Read More
IntroductionMany agricultural lands in Guilan province of Iran, especially paddy fields, remain uncultivated in the second half of the year due to various reasons including heavy rainfall, low soil permeability (stickiness of soil particles) and inefficiency of the existing drains. Mole drainage as a low-cost drainage method, proportion for rice cultivation conditions and easier to implement than pipe drainage, can be a suitable solution in the development of second cropping. Due to the oil content of 40% of the seed, the rapeseed plant is one of the valuable oil plants and has the ability to be cultivated as a second crop in paddy fields. Nitrogen plays a key role in the performance of plants and its deficiency causes limitations in plant production. Equipping paddy fields with mole drains along with the application of appropriate level of nitrogen fertilizer can increase the quantitative and qualitative yield of rapeseed as a second crop and contribute to the food security of the country. Therefore, the development of the cultivated area of rapeseed in paddy fields after rice harvesting in Rasht region, the study of the combined effect of mole drainage and different levels of nitrogen fertilizer on yield and yield components were the aims of this project. Materials and MethodsIn order to investigate the effects of mole drainage and nitrogen fertilizer on the yield and yield components of rapeseed as a second crop in Rasht rice fields, a factorial layout based on a randomized complete block design with three replications at the research field of the Faculty of Agricultural Sciences of Guilan University was implemented in the crop year of 2022-2023. The factors included mole drainage at three levels (without drainage, without gravel and with gravel) as D0, D1 and D2 respectively, and nitrogen fertilizer as urea source at two levels (180 and 240 kg ha-1) as N1 and N2 respectively. Rapeseed plant (Brassica napus) of Delgan cultivar was selected as the second crop after rice harvest. To carry out the experiment, at first the desired land was blocked and divided into plots, then the underground drains of mole were created without gravel and with gravel with a special blade in the desired plots. To drain the drainage from the mole drains, the polyca pipe was installed at the end of each mole tunnel, then the other side of polyca pipe was connected to the sub-pipe collection and finally led to the main surface drain. This experiment was conducted in 18 plots and each one was 9 × 6 meters. The distance between plots was 1.5 m, between replications was two meters, and the distance between plants was 15 and between rows was 25 cm. To avoid the effectiveness of drainage treatments from undrained treatments, undrained plots were considered at the end of the field. Before cultivation, basic chemical fertilizers, 200 kgha-1 of potassium from potassium sulfate source and 200 kgha-1 of phosphorus from ammonium phosphate source were applied. Nitrogen fertilizer from urea source was applied at the level of 180 and 240 kgha-1 in equal amount at three stages. Just before the harvest stage, to determine the traits of the number of seed in the pods of sub-branches, the number of seed per pod, the weight of seed in sub-branches, the weight of seed in the main branch and the weight of seed per plant, ten plants were randomly selected and harvested manually from the crown area. Also, to determine the seed yield, one square meter was randomly selected from each plot, taking into account the borders, and the bushes were manually harvested from the crown area. After the moisture content of the seeds reached the desired level, the seeds were separated from the pods and weighed using a laboratory scale with an accuracy of one thousandth of a gram, and the seed yield was calculated in kgha-1. SOXTEC SYSTEM HT 1043 Extraction Unit set was used to determine oil percentage and Kjeldahl set was used to determine seed protein. Statistical analysis of the data was done using SAS software (version 9.4) and comparison of means was done using the minimum significant difference test at 5% probability level. Excel software was used to draw the graphs. Results and DiscussionThe results of variance analysis of the data showed that the interaction effects of mole drainage and nitrogen fertilizer on the traits of seed weight in the main branches, seed weight in the plant and seed yield was significant at 5% probability level, so that the highest seed weight in the main branch with 0.733 seeds in the mole drainage with gravel with a nitrogen fertilizer level of 180 kgha-1 (D2×N1) treatment was obtained and the highest seed weight in the plant with 1.443 g in the mole drainage without gravel with a nitrogen fertilizer level of 240 kgha-1 (D1×N2) treatment was obtained. Also, the highest seed yield was obtained under 3579.48 kgha-1 in the treatment of mole drainage without gravel using 240 kgha-1 of fertilizer (D1×N2) which is compared to the treatment of without drainage and drainage with gravel with the same level of fertilizer 13.63 and 2.31 percentage was higher, respectively. In addition, rapeseed plant is more important in terms of oil percentage, no significant difference was observed between drainage and nitrogen fertilizer treatments in terms of average oil percentage. Therefore, the mole drainage treatment without gravel with a fertilizer level of 240 kgha-1 (D1×N2) is the most suitable option for rapeseed cultivation as the second crop after rice harvesting. ConclusionThe results of this study showed that mole drainage without gravel by improving soil ventilation conditions and preventing waterlogging of paddy fields along with the level of nitrogen fertilizer of 240 kgha-1 increased the yield of rapeseed compared to the condition of without drainage at the same level of nitrogen fertilizer. Therefore, rapeseed cultivation in vast paddy fields after rice harvesting can be recommended as a basic solution in order to increase the production of oilseeds and provide part of the country's oil consumption.
Soil science
K. Asadi; M. Barani Motlagh; S.A. Movahedi Naein; T. Nazari
Abstract
Introduction Methods and MaterialsThis experiment was carried out in a field near the village of Takhshi Mahalle, located 5 km northwest of Gorgan city with geographical coordinates (54° 17´ 56 ʺ N) (52° 51´ 36 ʺ E) in 2022. The physical and chemical properties of the soil ...
Read More
Introduction Methods and MaterialsThis experiment was carried out in a field near the village of Takhshi Mahalle, located 5 km northwest of Gorgan city with geographical coordinates (54° 17´ 56 ʺ N) (52° 51´ 36 ʺ E) in 2022. The physical and chemical properties of the soil were measured at a depth of 0-30 cm in different parts of the farm and the final composite soil was analyzed in the laboratory. Water was measured using conventional methods of sampling and testing water and wastewater. The experiment was conducted as a randomized complete block design with 3 replications. The treatments included control (with distilled water), foliar spraying of iron sulfate micronutrient elements [FeSO4.7H2O (20%Fe)], zinc sulfate [ZnSO4.7H2O (22% Zn)], and iron sulfate + zinc sulfate at a concentration of 5 per thousand at the 4-leaf stage, the 8-leaf stage and both stages (4-leaf and 8-leaf). Foliar spraying was done in the early morning and drip irrigation was used. Plants were harvested 120 days after planting, washed with distilled water and dried with tissue paper. The samples were air-dried and then oven dried at 70˚C to a constant weight in a forced air-driven oven. Iron and zinc concentrations were determined by an atomic absorption device. In order to determine the protein percentage and yield in different treatments, total nitrogen was measured by the Kjeldahl method. The protein percentage and yield were calculated using the following formula: Statistical data were analysed using SAS software (9.4) and the mean values were compared using LSD tests (at 5% level). Results and DiscussionThe obtained results showed that all treatments effects were significant (P<0.01) (fresh forage P<0.05). Among all the treatments and measured traits, the control treatment showed the lowest value. The highest iron concentration with an average of 175.14 mg kg-1 was obtained using iron foliar spraying in both 8 and 4 leaf stages, which increased 22.73 and 34.39% in comparison with only using iron foliar application in 4 and 8 leaf stages, respectively. Zinc foliar spraying at both the 4 and 8 leaf stages resulted in the highest zinc concentration of 71.02 mg kg-1 in forage corn, increasing zinc concentration by 89.86% over the control. In both 4 and 8 leaf stages, an iron and zinc foliar application had the highest chlorophyll index with an average of 57.63. The highest nitrogen content, averaging 2.80%, was observed following foliar spraying of iron and zinc during both the 4 and 8 leaf stages. This represents an increase of 5% and 23.92% compared to iron and zinc foliar application treatments during the respective stages. Consequently, the highest yield and protein percentage were also attained, averaging 310.75 grams per square meter and 17.50%, respectively, with simultaneous foliar application of iron and zinc during both the 4 and 8 leaf stages. ConclusionThe optimal outcomes for measured traits were observed when iron and zinc were concurrently applied at both the 4 and 8 leaf stages. Therefore, it is advisable to administer iron and zinc simultaneously during these growth stages to ensure the attainment of forage with desirable quantitative and qualitative characteristics.
saeid hokmalipour; mehdi panahyankivi; manocher shiri janagard
Abstract
Introduction: The excessive uses of chemical fertilizers have generated several environmental problems. Some of these problems can be tackled by use of Biofertilizer, which are natural, beneficial and ecologically friendly. The Biofertilizers provide nutrients to the plants and maintain soil structure. ...
Read More
Introduction: The excessive uses of chemical fertilizers have generated several environmental problems. Some of these problems can be tackled by use of Biofertilizer, which are natural, beneficial and ecologically friendly. The Biofertilizers provide nutrients to the plants and maintain soil structure. Biofertilizer is an alternative to mineral fertilizers for increasing soil productivity and plant growth in sustainable agriculture. Plant growth promoting rhizobacteria (PGPR) are a group of bacteria that actively colonize plant roots and increase plant growth and yield. There is a widespread distribution of PGPR that flourishes in different geographical habitats. These rhizobacteria significantly affect plant growth not only by increasing nutrient cycling, also by suppressing pathogens by producing antibiotics and siderophores or by bacterial and fungal antagonistic substances and/or by other plant hormones. Inoculation of plants with Azospirillum could result in significant changes in various growth parameters, such as increase in plant biomass, nutrient uptake, tissue N content, plant height, leaf size and root length of cereals. Thus, it has been shown that Azospirillum and Pseudomonas have the potential for agricultural exploitation and can be used as natural fertilizers. The divers array of bacteria including Pseudomonas, Azospirillum, Azotobacter, Bacillus, Klebsilla, Entrobacter and Serratia seem to promote plant growth. These bacteria are important components of the rhizosphere of many plants, and are known to colonize the rhizosphere of wheat, potato, maize, grasses, pea and cucumber. Strains of Pseudomonas putida and Pseudomonas fluorescens could increase root and shoot elongation in wheat. Azospirillum, Pseudomonas and Azotobacter strains could affect seed germination and seedling growth
Materials and Methods: To investigate yield, yield components and some qualitative and quantitative characteristics of safflower at different planting dates, a factorial experiment was conducted based on randomized completed block design with three replications in 2016 at the laboratory of Agricultural University of Payam Noor, Kosar (Kivi) branch. The first factor consists of three sowing dates (5 March, 20 April and 5 May) and the second factor involves the seeds inoculation with plant growth promoting rhizobacteria (no inoculation, seed inoculation with Azotobacter chorchorum strain 5 and Azosprilium lipoferum strain OF). The climate of studied region is semi-arid with 1350 meters altitude from sea level. Based on the soil test, pH was about 7.1, soil texture was loamy-sand and the depth of top soil was 70 cm. The experimental unit included six ridges of 25 cm in 6 m length. The plant density was 40 plants per m2. Each 1 gram bacteria have 107 no, we therefore used about 7 gr from each bacterium for seed inoculation. We also used Arabic gum to adhere the bacteria to the seed.
Results and Discussion: The results showed that the planting date had a significant effect on all characteristics, except brain to grain ratio and the ratio of skin to grain. The effect of seed inoculation with plant growth promoting rhizobacteria was statistically significant on plant height, stem diameter, number of main and sub main branches, seed oil and protein percentage. The maximum number of boll per plant, number of grain per boll, 1000-grain weight, grain yield, biological yield, harvest index, plant height and protein percent were achieved on the first planting date (5 April). The lowest amounts of these traits were obtained on the third planting date (5 May). The maximum oil percentage, number of primary and secondary branches and stem diameter were obtained on the first planting date and seed inoculation by Azotobacter. The lowest rates of these traits were obtained on the third planting date and no inoculation. Thus, seed priming with Azotobacter and first date (5 March) planting are recommendable to increase number of grain per boll, 1000-grain weight, grain yield, biological yield, harvest index, plant height and protein percent and other traits.