Soil science
Z. Movahedi Rad; M. Hamidpour
Abstract
Introduction Recently, layered double hydroxides (LDHs) have attracted significant attention due to their various applications, particularly as slow-release fertilizers for essential plant nutrients. Several studies have reported the release of nitrate and phosphorus from LDHs. Additionally, micronutrients ...
Read More
Introduction Recently, layered double hydroxides (LDHs) have attracted significant attention due to their various applications, particularly as slow-release fertilizers for essential plant nutrients. Several studies have reported the release of nitrate and phosphorus from LDHs. Additionally, micronutrients such as zinc (Zn), copper (Cu), and manganese (Mn) can be structurally incorporated into the metal hydroxide layers. Recent research indicates that LDHs have considerable potential for releasing these micronutrients. However, further studies are needed to enhance our understanding of the mechanisms and reactions of LDHs under different conditions. Currently, there is a lack of information regarding the divalent (M2+) to trivalent cation (M3+) ratios in LDHs and the influence of malic acid on the release of Zn, Mn, and magnesium (Mg) from these compounds. This study aimed to investigate the effects of malic acid and the ratio of M2+/M3+ on the kinetics release of Zn, Mn and Mg from Mg-Zn-Mn-Al-LDH intercalated with nitrate. Materials and MethodsAll chemicals used in this study including malic acid (C4H6O5), KCl, Zn(NO3)2.6H2O, Mn(NO3)2.4H2O, Mg(NO3)2.6H2O and Al(NO3).9H2O were of analytical grades, purchased from Chem-Lab or Merck Chemical Corporations. The solutions were made with the decarbonated ultrapure water (electrical resistivity = 18 MΩcm). The LDHs were synthesized by co-precipitation method at constant pH=9.2-9.6. Two types of LDHs were synthesized with varying the M+2(Zn+Mn+Mg)/M+3(Al) 3:1 and 4:1 in the precursor solution while being stirred vigorously in a nitrogen atmosphere. The pH was kept at 9.2-9.6 by adding volumes of 3 M NaOH. The crystals of LDH were ripened in the mixture for 2 h and after that, the precipitates were centrifuged at 3000 rpm for 20 min and washed several times with distilled water and placed in an oven at 70 °C for 8 h to dry. The chemical composition of the synthesized LDHs was determined by furnace atomic absorption spectrophotometry (SavantAA, GBC) after acid digestion. The physical, chemical, and morphological characteristics of the LDHs were determined using X-ray diffraction analysis (Panalytical x Pert ProX-ray diffractometer), Fe-SEM (Sigma VP), FT-IR (Nicolet iS10 spectrometer), and BET (BELSORP Mini II) techniques. A batch study was done to determine the effect of different ratios of M2+/M3+ in LDHs and the effect of malic acid on release of Zn, Mn, and Mg from LDH (3:1) and LDH (4:1). Briefly, 0.01 g of synthesized LDH were put in a centrifuge tube mixed with 10 ml background electrolyte (KCl 0.01 M) and 1.25 mM malic acid in initial pH=6-7 and constant temperature (25±0.5 °C). Blank samples (without ligand) were also considered. Suspensions were shaken at periods ranging from 5 to 720 min agitation (180 rpm). Then, the supernatant solution was separated using a centrifuge at a speed of 4000 rpm for 20 min. Zn, Mn, and Mg concentrations in supernatants solutions were determined by graphite furnace atomic absorption spectrophotometry. The effect of pH in the range of 5 to 10 on the release of Zn, Mn, and Mg from LDH was also studied. Two equations (pseudo-second-order and Elovich) were used to fit the kinetics data. Results and DiscussionThe results showed that the calculated molar ratio of divalent cation to trivalent cation was similar to their molar ratio in the solution prepared for the synthesis of LDH samples. The X-ray diffraction patterns of LDH (3:1) and LDH (4:1) samples showed the existence of strong and sharp peaks for 003 and 006 plates. Accordingly, the reflections of the 003 and 006 plates revealed the layered structure of the synthesized LDH materials. Two bands of FT-IR spectrums around 3480 and 1620 cm-1 for all synthesized LDH materials designated stretching vibrations of the O-H group of hydroxide layers and the interlayer water molecules. The sharp characteristic band around 1382 cm−1 in LDH (3:1) and band around 1354 cm-1 in LDH (4:1) was attributed to the antisymmetric stretching mode of nitrate anion in LDH. The specific surface area of LDH (3:1) and LDH (4:1) were 5.50 m2g-1 and 16.54 m2g-1 respectively. The average pore diameters in LDH (3:1) and LDH (4:1) were 1.92 nm and 2.55 nm, respectively. Time-dependent cumulative release of Zn, Mn, and Mg from LDH (3:1) and LDH (4:1) in the presence and absence of malic acid was investigated. Time-dependent Zn, Mn, and Mg release from LDH (3:1) and LDH (4:1) was accelerated in the presence of malic acid. The Zn, Mn, and Mg release from the LDHs was likely to be separated into two stages. In the initial stage from 0 to 60 min, the release rate of Zn, Mn, and Mg was rapid, then either remained constant or slightly enhanced during 60–720 min. In this research, among the non-linear models used to determine the release kinetics of Zn, Mn, and Mg, the result with the highest R2 values was chosen. The R2 values were 0.91–0.99, 0.93–0.99, 0.93–0.99, 0.89-0.99, and 0.55–0.86 for pseudo-first-order, pseudo-second-order, Elovich, power function, and parabolic diffusion, respectively. So, pseudo-second-order and Elovich models were used to analyze kinetic data. The amounts of release of Zn, Mn and Mg were higher from LDH (4:1) than from LDH (3:1) because of greater specific surface area, volume, and pore diameter in LDH (4:1). A comparison of metal release versus time profiles exhibited that dissolution was greatly dependent on the pH. ConclusionThe results of this research indicated that the release of Zn, Mn, and Mg from layered double hydroxides (LDHs) was influenced by factors such as time, ligand, solution pH, and the type of LDH. According to the kinetics models fitted to the experimental data, the release rate of Zn, Mn, and Mg from LDH (4:1) was higher than that from LDH (3:1). In both types of LDHs, the presence of malic acid significantly increased both the rate and amount of Zn, Mn, and Mg release compared to the absence of malic acid. While this study demonstrated that varying the ratios of divalent to trivalent cations can influence the amount and rate of Zn and Mn release, further greenhouse studies are required to confirm the effectiveness of LDH as a slow-release fertilizer in calcareous soils.
Soil science
Z. Barati; H.R. Owliaie; E. Adhami; M. Najafi-Ghiri
Abstract
IntroductionRecently, layered double hydroxides (LDHs) have attracted significant attention due to their variousapplications, particularly as slow release fertilizers for essential plant nutrients. Several studies have reported therelease of nitrate and phosphorus from LDHs. Additionally, micronutrients ...
Read More
IntroductionRecently, layered double hydroxides (LDHs) have attracted significant attention due to their variousapplications, particularly as slow release fertilizers for essential plant nutrients. Several studies have reported therelease of nitrate and phosphorus from LDHs. Additionally, micronutrients such as zinc (Zn), copper (Cu), andmanganese (Mn) can be structurally incor porated into the metal hydroxide layers. Recent research indicates thatLDHs have considerable potential for releasing these micronutrients. However, further studies are needed toenhance our understanding of the mechanisms and reactions of LDHs under diff erent conditions. Currently, thereis a lack of information regarding the divalent (M 2+2+) to trivalent cation (M 3+3+) ratios in LDHs and the influence ofmalic acid on the release of Zn, Mn, and magnesium (Mg) from these compounds. This study aimed toinvesti gate the effects of malic acid and the ratio of M 2+2+/M 3+ on the kinetics release of Zn, Mn and Mg from MgZn Mn Al LDH intercalated with nitrate nitrate.Materials and MethodsAll chemicals used in this study including malic acid (C4H6O5), KCl, Zn(NO3)2.6H2O, Mn(NO3)2.4H2O, Mg(NO3)2.6H2O and Al(NO3).9H2O were of analytical grades, purchased from Chem-Lab or Merck Chemical Corporations. The solutions were made with the decarbonated ultrapure water (electrical resistivity = 18 MΩcm). The LDHs were synthesized by co-precipitation method at constant pH=9.2-9.6. Two types of LDHs were synthesized with varying the M+2(Zn+Mn+Mg)/M+3(Al) 3:1 and 4:1 in the precursor solution while being stirred vigorously in a nitrogen atmosphere. The pH was kept at 9.2-9.6 by adding volumes of 3 M NaOH. The crystals of LDH were ripened in the mixture for 2 h and after that, the precipitates were centrifuged at 3000 rpm for 20 min and washed several times with distilled water and placed in an oven at 70 °C for 8 h to dry. The chemical composition of the synthesized LDHs was determined by furnace atomic absorption spectrophotometry (SavantAA, GBC) after acid digestion. The physical, chemical, and morphological characteristics of the LDHs were determined using X-ray diffraction analysis (Panalytical x Pert ProX-ray diffractometer), Fe-SEM (Sigma VP), FT-IR (Nicolet iS10 spectrometer), and BET (BELSORP Mini II) techniques. A batch study was done to determine the effect of different ratios of M2+/M3+ in LDHs and the effect of malic acid on release of Zn, Mn,and Mg from LDH (3:1) and LDH (4:1). Briefly, 0.01 g of synthesized LDH were put in a centrifuge tube mixed with 10 ml background electrolyte (KCl 0.01 M) and 1.25 mM malic acid in initial pH=6-7 and constant temperature (25±0.5 °C). Blank samples (without ligand) were also considered. Suspensions were shaken at periods ranging from 5 to 720 min agitation (180 rpm). Then, the supernatant solution was separated using a centrifuge at a speed of 4000 rpm for 20 min. Zn, Mn, and Mg concentrations in supernatants solutions were determined by graphite furnace atomic absorption spectrophotometry. The effect of pH in the range of 5 to 10 on the release of Zn, Mn, and Mg from LDH was also studied. Two equations (pseudo-second-order and Elovich) were used to fit the kinetics data.Results and DiscussionThe results showed that the calculated molar ratio of divalent cation to trivalent cation was similar to their molar ratio in the solution prepared for the synthesis of LDH samples. The X-ray diffraction patterns of LDH (3:1) and LDH (4:1) samples showed the existence of strong and sharp peaks for 003 and 006 plates. Accordingly, the reflections of the 003 and 006 plates revealed the layered structure of the synthesized LDH materials. Two bands of FT-IR spectrums around 3480 and 1620 cm-1 for all synthesized LDH materials designated stretching vibrations of the O-H group of hydroxide layers and the interlayer water molecules. The sharp characteristic band around 1382 cm−1 in LDH (3:1) and band around 1354 cm-1 in LDH (4:1) was attributed to the antisymmetric stretching mode of nitrate anion in LDH. The specific surface area of LDH (3:1) and LDH (4:1) were 5.50 m2g-1 and 16.54 m2g-1 respectively. The average pore diameters in LDH (3:1) and LDH (4:1) were 1.92 nm and 2.55 nm, respectively. Time-dependent cumulative release of Zn, Mn, and Mg from LDH (3:1) and LDH (4:1) in the presence and absence of malic acid was investigated. Time-dependent Zn, Mn, and Mg release from LDH (3:1) and LDH (4:1) was accelerated in the presence of malic acid. The Zn, Mn, and Mg release from the LDHs was likely to be separated into two stages. In the initial stage from 0 to 60 min, the release rate of Zn, Mn, and Mg was rapid, then either remained constant or slightly enhanced during 60–720 min. In this research, among the non-linear models used to determine the release kinetics of Zn, Mn, and Mg, the result with the highest R2 values was chosen. The R2 values were 0.91–0.99, 0.93–0.99, 0.93–0.99, 0.89-0.99, and 0.55–0.86 for pseudo-first-order, pseudo-second-order, Elovich, power function, and parabolic diffusion, respectively. So, pseudo-second-order and Elovich models were used to analyze kinetic data. The amounts of release of Zn, Mn and Mg were higher from LDH (4:1) than from LDH (3:1) because of greater specific surface area, volume, and pore diameter in LDH (4:1). A comparison of metal release versus time profiles exhibited that dissolution was greatly dependent on the pH.ConclusionTheresults of this research indicated that the release of Zn, Mn, and Mg from layered double hydroxides(LDHs) was influenced by factors such as time, ligand, solution pH, and the type of LDH. According to thekinetics models fitted to the experimental data, the release rate of Zn, Mn, and Mg from LDH (4:1) was higherthan that from LDH (3:1). In both types of LDH s , the presence of malic acid significantly increased both the rateand amount of Zn, Mn, and Mg release compared to the absence of malic acid. While this study demonstratedthat varying the ratios of divalent to trivalent cations can influence the amount and rate of Zn and Mn release,further greenhouse studies are required to confirm the effectiveness of LDH as a slow release fertilizer incalcareous soils.
S. Abdollahi; A. Golchin; F. Shahryari
Abstract
Introduction: Contamination of soils by heavy metals is one of the most serious environmental problems that increases the risk of toxic metal entry into the food chains. When heavy metals enter the soil, they are progressively converted to the insoluble form by reactions with soil components. A variety ...
Read More
Introduction: Contamination of soils by heavy metals is one of the most serious environmental problems that increases the risk of toxic metal entry into the food chains. When heavy metals enter the soil, they are progressively converted to the insoluble form by reactions with soil components. A variety of mechanisms such as absorption, ion exchange, co-precipitation and complexation incorporates heavy metals into soil minerals or bounds them to various soil phases. Organic acids are natural compounds that are secreted from the root of the plant and can affect the solubility and uptake of heavy metals.
Materials and Methods: To evaluate the effects of plant growth promoting rhizobacteria (PGPR) on organic acids production and heavy metal uptake by different cabbage varieties, a factorial pot experiment with completely randomized design and three replications was performed under the greenhouse conditions. The factors included (a) rhizosphere soils of three varieties of cabbage [Brassica oleracea var. acephala L. (Ornamental cabbage), Brassica oleracea var. italica L. (Broccoli cabbage) and Brassica oleracea var. capitata L. (Cabbage)] and (b) five species of PGPR consisting of Pseudomonas putida PTCC 1694, Bacillus megaterium PTCC 1656, Proteus vulgaris PTCC 1079, Bacillus subtilis PTCC 1715 and Azotobacter chroococcum and control (without rhizobacteria) used to inoculate the rhizosphere soils. The experiment had 18 treatments and there were 54 experimental units and three seedlings of cabbage were planted in each pot. In all treatments inoculated with rhizobacterial species, 2 ml of a bacterial suspension with 107-108 (cfu ml-1) were used to inoculate the soil of root area. The data obtained in this study were statistically analyzed by SAS software (version 9.4) and the mean comparison was performed by Duncan’s multiple range test at 1 and 5 percent probability levels.
Results and Discussion: The analysis of variance (ANOVA) showed that the cabbage varieties, bacterial inoculation and their interactions had significant effects (p < 0.01) on organic acids concentration, fresh and dry biomass of plant, concentrations of Pb and Cd in root and shoot of cabbage plant. The results showed that inoculation of the rhizosphere soils with PGPR species increased organic acids concentration of rhizosphere. The highest concentration of malic and citric acids in rhizosphere soil (9.59 and 118.34 mg dl-1, respectively) was obtained when the rhizosphere soils of the broccoli were inoculated with Pseudomonas putida PTCC 1694 and the highest concentration of acetic acid in rhizosphere (233.88 mg dl-1) was determined when the rhizosphere of broccoli were inoculated with Bacillus megaterium PTCC 1656. Inoculation of the rhizosphere with PGPR species also increased the fresh and dry biomass of plant, and Pb and Cd concentrations in cabbage root and shoot. The highest fresh and dry biomass of cabbage (416.77 and 76.96 g in the plot, respectively) were obtained when the rhizosphere soils of cabbage were inoculated with Bacillus megaterium PTCC 1656, the highest concentration of Pb in the root and shoot and Cd in the root of cabbage (12.20, 90.77 and 9.01 mg kg-1, respectively) were obtained when the rhizosphere soils of the ornamental cabbage were inoculated with Pseudomonas putida PTCC 1694. Inoculation of the rhizosphere soils of the ornamental cabbage, broccoli and cabbage by B. megaterium PTCC1656 caused an increase in the DOC concentration by 137, 150 and 120%, respectively, compared to uninoculated rhizosphere soils. Bacterial inoculation also increased the concentrations of available phosphorus in the rhizosphere soils and the highest concentration of phosphorus was measured in the treatments inoculated by P. putida PTCC1694. Furthermore, the concentrations of available phosphorus in the rhizosphere soils of the ornamental cabbage, broccoli and cabbage increased by 79, 71 and 111%, respectively, relative to uninoculated rhizosphere soils.
Conclusion: It is concluded that inoculation of Pb and Cd contaminated soils by PGPR species, especially Bacillus megaterium PTCC 1656 and Pseudomonas putida PTCC 1694, enhances the tolerance of host plants, metal uptake performance and thus phytoremediation process by increasing the metal bioavailability and biomass production of the plant. As the distribution and accumulation of heavy metals in plant tissues are important factors for evaluation of plant role in phytoremediation of polluted soils, the PGPR inoculation of rhizosphere soils can be used as a biotechnological tool to enhance biomass production and plant uptake and thus the efficiency of phytoextraction.
sanaz ashrafi saeidlou; Mirhasan Rasouli-Sadaghiani; Abbas Samadi; mohsen barin; ebrahim sepehr
Abstract
Introduction: Potassium is one of essential nutrients for plants and its importance in agriculture is well known. Non-exchangeable potassium that is mainly placed with in layers of K-bearing minerals, such as K-feldspar and mica, is considered as an important source of potassium for plant growth in most ...
Read More
Introduction: Potassium is one of essential nutrients for plants and its importance in agriculture is well known. Non-exchangeable potassium that is mainly placed with in layers of K-bearing minerals, such as K-feldspar and mica, is considered as an important source of potassium for plant growth in most soils. Regarding that low molecular weight acids (LMW) play an important role in improving the bioavailability of soil nutrients such as non-exchangeable K (NEK), and the release rate of NEK plays a significant role in supplying necessary K for plants, the purpose of this study was comparison of potassium release kinetic from K-bearing including feldspar, illite as well as phlogopite minerals and choose the best kinetic equation describing potassium release process, influenced by organic as well as mineral extractants.
Material and Methods: The experiment carried out in a completely randomized design with three replications. Experiment factors were including extractant type (0.01 mol l-1 oxalic acid, 0.01 mol l-1 calcium chloride, control (deionized water)), potassium mineral type (feldspar, illite and phlogopite) and incubation time (1, 2, 4, 8, 12, 16, 24, 32, 48, and 64 hours). Elemental composition of minerals identified by Fluorescence spectroscopy device (S4 Pioneer). Used minerals in the experiment including feldspar, phlogopite and illite were ground and filtered through a 230 mesh sieve. In order to remove exchangeable K, samples were saturated by calcium chloride solution (with a ratio of 2:1), after washing with HCl, samples were dried at 105 °C for 48 hours. 100 mg of washed minerals, was weighed carefully and transferred to centrifuge tubes. Then 20 ml of each of extractants (oxalic acid and calcium chloride 0.01M) was added to the tubes. After 15 minutes shaking, tubes containing a mixture of minerals-extractants was carried out in a controlled incubation chamber for periods of 1, 2, 4, 8, 12, 16, 24, 32, 48 and 64 hours at 25 °C. After each period, samples were centrifuged at 3000 rpm for 10 minutes and filtered using Whatman paper (No. 41). pH and potassium concentration of samples were measured by pH meter and flame photometer, respectively. Data related to potassium release was fitted by zero order, first order, second order, power function, parabolic diffusion and ellovich equations.
Results and Discussion: Results showed that the effect of extractant type was significant on kinetic of potassium release, so that potassium release amount in samples extracted with oxalic acid was 1.48 and 2.35 times higher than samples extracted with calcium chloride and control (deionized water), respectively. Also, different minerals released various amounts of potassium. K release from phlogopite was 1.99 and 2.95 times higher than feldspar and illite, respectively. The maximum potassium concentration (440 mg kg-1) was seen in phlogopite which was extracted with oxalic acid. So that, amount of potassium in this treatment was 3.15 times higher than control one. Furthermore, the effect of extraction time on K release was significant. So that, at the beginning of incubation period the release of potassium by different extractants was more, but its amount decreased over time and finally continued with a constant speed. Kinetic equation fitting showed that zero order, first order, power function, parabolic diffusion and ellovich equations are able to describe potassium release but second order model cannot justify it. Among these five equation, the power function and parabolic diffusion equations with the maximum coefficient of determination (R2) and the least standard error of estimate (SE), could reasonably describe the K release kinetics, so they are introduced as the best models for data fitting. The slope (b) and interception (a) of ellovich equation indicate interlayer and initial K release, respectively. Oxalic acid and phlogopite had the most amount of interception, it means that the impact of oxalic acid on initial and interlayer release rate of K in phlogopite, is more effective than calcium chloride.
Conclusions: It is concluded that different factors like mineral and extractant type influence kinetic of potassium release and organic extractant have more ability in extracting non-exchangeable potassium from minerals structure. Also, the adjustment of the results of this study with first order, parabolic diffusion and power function equations suggest that nonexchangeable potassium release from minerals can be affected by diffusion process from the surface of the study minerals, indicating that NEK release rate is controlled by K diffusion out of the mineral interlayer.