Ali Ansori Savari; Majid Nabipour; Masoume Farzaneh
Abstract
Introduction
The high-water requirement of sugarcane in arid and semi-arid regions, coupled with a decrease in rainfall, has led to an increase in the use of drainage water for sustainable production management. It has been estimated that 20% of all cultivated land and 33% of irrigated agricultural land ...
Read More
Introduction
The high-water requirement of sugarcane in arid and semi-arid regions, coupled with a decrease in rainfall, has led to an increase in the use of drainage water for sustainable production management. It has been estimated that 20% of all cultivated land and 33% of irrigated agricultural land are affected by high salinity. Salinity stress poses two main threats to plants: ionic toxicity and osmotic stress. Ionic toxicity occurs when there is a significant buildup of Na+ in the leaves in a saline environment. This disrupts the balance of water and ions in plants, damages organelle structure, and inhibits plant growth, potentially leading to death. Some studies have shown that ion toxicity caused by Na+ can inflict more irreversible damage on plants than osmotic stress. Silicon application (Si) showed improved photosynthetic efficiency, growth, and yield compared to plants under salt stress. Previous studies have also shown that silicon treatments can increase salinity tolerance in various plants, including wheat, corn, rice, and canola. However, the extent of silicon-mediated benefits under salinity can vary greatly between species and is largely dependent on the plant's capacity for element uptake dictated by its genetic makeup. There is limited information regarding the use of drainage water in sugarcane irrigation management in arid and semi-arid regions, as well as the potential for improving salinity stress through silicon application. Therefore, this study was conducted to evaluate the effects of Si on two sugarcane varieties irrigated with salt water.
Materials and Methods
The pot experiment was conducted in a greenhouse with natural light at the agricultural site of Sugarcane Dehkhoda Company in Khuzestan Province, Iran, in 2021-2022. The temperature and humidity percentages are indicated in Figure 1. This study caried out as split-split plot design based on randomized Block design (RBD). The main plot factors included three levels of salinity: control of 1.4±0.2 dS.m-1 (S0) from the river water source, salinity stress of 4.1±0.2 dS.m-1 (S1), and salinity stress of 8.2±0.2 dS.m-1 (S2) from the drain water source, with a sub-factor of variety treatment (CP73-21 and CP69-1062). The silicon application timing was also considered as a sub-factor, with four levels: Si0, non-silicon application (Control); Si1, one month before salinity stress; Si2, during salinity stress; and Si3, (After 30 days of salt stress, silicon was applied). The sugarcane sprouts are grown in polyethylene pots 100 cm in height and 45 cm in width. Each pot contained 100 kg of soil. A total of 216 experimental units were used during the experiment. The experimental pots were filled with a mixture of field soil and sugarcane filter cake in a 3:1 ratio. The results of the chemical analysis of field soil and filter cake are presented in Table 2. The salt stress was applied 113 days after growing cuttings and continued until harvest.
Results and Discussion
The results of the first year showed that salt stress significantly reduced the height of the sugarcane stalk. Also, at the salinity stress levels of 4.1 and 8.2 dS/m, the SPAD index decreased by 22.3% and 27%, respectively. Additionally, leaf sheath moisture dropped by 6.4% and 11.8%, electrolyte leakage increased by 11% and 22.7%, and the photosynthesis rate decreased by 28% and 42% compared to the control treatment. The optimal time to apply silicone fertilizer was one month prior to the onset of stress, which resulted in a significant improvement in all studied traits at salinity stress levels of 1.4 dS/m (control) and 4.1 dS/m. Furthermore, the qualitative analysis of sugarcane syrup in the second year revealed a decrease in sucrose percentage (14.1% and 33.5%, respectively) and white sugar content (12.6% and 40.9%, respectively) at salinity stress levels of 4.1 and 8.2 dS/m. The photosynthesis rate of sugarcane leaves decreased by 28.3 to 41.8 percent under salt stress levels of 4.1 and 8.2 dS, respectively. The CP69-1062 variety exhibited a better response compared to the CP73-21 variety, showing relative superiority in all growth and physiological traits studied.
Conclusion
The results also indicated that the optimal time to apply silicon fertilizer to sugarcane plants was one month before the onset of stress, resulting in a significant improvement in all studied traits. The application of silicon fertilizer led to a 1 percent increase in sucrose, 3.7 percent increase in syrup purity, and 3 percent increase in white sugar yield compared to no application.
A. Hassanoghli
Abstract
Produced sludge from wastewater treatment plants is a source of macro and micro nutrients and organic matters which is needed for agriculture. On the other hand, application of sludge with no criterion may cause some health risks and also, soil and surface water and ground water resources pollution may ...
Read More
Produced sludge from wastewater treatment plants is a source of macro and micro nutrients and organic matters which is needed for agriculture. On the other hand, application of sludge with no criterion may cause some health risks and also, soil and surface water and ground water resources pollution may be followed. In this regards, the effect of different amounts of sewage sludge used as organic fertilizer in compare with chemical fertilizers on transport of minerals below the root zone and yield and yield components in soybean cultivation were studied. Therefore, 15 cylindrical plastic soil culomns with a height of 100 cm and 60 cm diameter were constructed and drainage PVC pipes with geotextile filter were installed for all of them. The sludge of Ekbatan housing complex wastewater treatment plant after processing and digestion was taken place and used. The culomns were filled by a Clay Loam textured soil and Soybean (Williams variety) was planted. Treatments include three levels of wastewater sludge fertilizer (10, 25 and 50 ton/ha), chemical fertilizers (150 kg/ha ammonium phosphate and 50 kg/ha urea) and control without using fertilizer in three replications. According to the results, the highest mean amount of nitrate in drainage water of culomns (base on split plot through time as statistical completely randomized design) was 57.17 mg/lit in the early season and treatment related to the use of sludge was 50 ton/ha. The lowest mean value of nitrate obtained from the control in the end of cultivation season and was 3.51 mg/lit. The most yield of Soybean was 277.85 gr grains per culomn which obtained from use of 50 ton/ha of manure sludge. The greatest weight of 1000 grains and the number of pods with values of 127.42 gr and 856 in number, measured in this treatment too. Application of 25 ton/ha sludge, chemical fertilizers and 10 ton/ha sludge were after it, respectively. So, the highest use of sewage sludge on soybean cultivation (at the rate of 50 ton/ha), transfer the highest amount of nitrate below the root zone and led to the best yield indicators