Soil science
J. Sadeghi; A. Lakzian; A. Halajnia; M. Alikhani Moghaddam
Abstract
Introduction
The rapid growth of technology, industry, and development of cities has led to an increase in heavy metal pollution in freshwater sources and greywater across the world. The use of different adsorbents in order to remove some heavy metals from aquatic environments is a topic that has been ...
Read More
Introduction
The rapid growth of technology, industry, and development of cities has led to an increase in heavy metal pollution in freshwater sources and greywater across the world. The use of different adsorbents in order to remove some heavy metals from aquatic environments is a topic that has been addressed many times in different studies. However, the use of inexpensive absorbents with high adsorption capacity and high efficiency is the priority of many researchers especially when they are discussing the removal of heavy metals from the aquatic environment. Nanomaterials by having exceptional properties such as high efficiency of adsorption, high specific surface area, and fast adsorption can be used to remove metal pollutants from aquatic environments. Carbon dot (CD), among various nanomaterials (carbon-based nanomaterials (CNM), including carbon nanotubes (CNTs), graphene) are suitable adsorbents for heavy metals removal due to their specific surface area and many binding sites. Carbon dots are nanoparticles that lack a specific dimension and fall under the category of carbon nanomaterials, measuring over 10 nm in size. They possess various qualities, including being environmentally friendly, simple to create, highly compatible with living organisms, stable, and capable of switching emission on and off based on the excitation wavelength. Additionally, they can be customized for specific uses due to their high carbon content, which can reach up to 99.9%. These characteristics have generated significant interest among researchers in various fields. In this study, the influence of the fungal carbon dots on the adsorption capacity and kinetics, isotherms, and thermodynamics of lead was investigated.
Materials and Methods
Alternaria alternata provided by the Department of Plant Protection at Ferdowsi university of Mashhad. It was recultured and fungal exopolysaccharide was extracted and then was converted into carbon dot using the hydrothermal method. Fungal exopolysaccharide autoclaved in a Teflon container at a temperature of 200 °C. Lead adsorption of synthesized fungal carbon dots was investigated. Lead adsorption tests by fungal carbon dots were performed in laboratory conditions. Lead concentrations (100, 200, 300, 400, 500, 750 and 1000 mg L-1), contact time (5, 10, 15, 20, 25, 30 and 60 minutes), pH (2, 4, 6, 7, 8, 9, 10 and 11), amount of carbon dots (nanosorbent) (50, 100, 200, 300, 400, 500, 750 and 1000 mg), ionic strength of the solution (0.1, 0.01 and 0.001 M potassium chloride) and solution temperature (25, 30, 35, 40 and 45 °C) was considered for kinetic tests. The data obtained from the kinetic tests were fitted using non-linear regression analysis using Statistica 7.0 software with the kinetic models of intraparticle diffusion, Lagergren (pseudo-first order) and pseudo-second-order. Thermodynamic results were calculated from the data of lead adsorption isotherms at temperatures of 25, 35 and 45 °C. Thermodynamic parameters to analyze the effect of temperature on metal adsorption, such as free energy change, enthalpy change and entropy change, were estimated using thermodynamic equations.
Results and Discussion
The initial lead concentration had a great effect on the adsorption rate it by carbon dot, and the highest and lowest percentage of lead adsorption with values of 90.65 and 44.2% were observed in two concentrations of 300 and 1000 mg L-1 of lead, respectively. With the increase of pH up to 8, the amount of lead adsorption by fungal carbon dot increased significantly. However, with further increase in pH, this trend was reversed and the amount of adsorption decreased. The results showed that lead adsorption by carbon dot increased with the decrease of potassium chloride molarity. By increasing the amount of carbon dot in the solution, the amount of lead adsorption increased, and the highest adsorption was observed at the concentration of 300 mg L-1 of carbon dot. The results of the experiment also showed that with increase in temperature, the adsorption rate increased at first and then decreased. Based on these results, as the contact time between the absorbent and lead increased, the amount of adsorption by the carbon dots also increased. The maximum adsorption was observed at 25 minutes, which was considered the equilibrium time. As shown in the results, the pseudo-second-order model shows the kinetics of Pb adsorption better than the two pseudo-first-order models and intraparticle diffusion. In this model, R2 values are between 0.9989 and 0.9994, and Qe is almost equal to the equilibrium value. According to these results, the decrease of values DG° with the increase in temperature means that the adsorption of lead increases with the increase in temperature, which shows that the adsorption process is more favorable with the increase in temperature, or in other words, it is a spontaneous reaction. Also, the positivity of the reaction enthalpy value (DH°) shows the endothermic nature of the adsorption process. The positivity of the entropy value (DS°) indicates the increase of disorder of the system between the adsorbent material and the solution during the process of lead adsorption by the carbon dot.
Conclusion
In total, the results showed that the carbon dot is a very good absorbent for removing lead from the water environment. In the experimental condition when the initial concentration of lead was 300 mg L-1, temperature was 25 °C, adsorbent concentration was 0.3 g L-1, reaction time was 25 minutes, and pH 8, the amount of lead adsorption increased significantly. It seems that fungal carbon dot is a safe and relatively cheap adsorbent and suitable for removing lead metal from the solution environment.
Soil science
F. Alizadehgan; M.A. Gholami; S. Shiukhy Soqanloo
Abstract
IntroductionIncreased agricultural activities, the occurrence of successive droughts, and limited freshwater resources, along with increasing population, have made a priority for the importance of protecting water resources in programs of developed and developing countries. Due to the climatic conditions ...
Read More
IntroductionIncreased agricultural activities, the occurrence of successive droughts, and limited freshwater resources, along with increasing population, have made a priority for the importance of protecting water resources in programs of developed and developing countries. Due to the climatic conditions in Iran, which has a wide range of arid and semi-arid characteristics, facing the challenge of water resources crisis, is inevitable. Therefore, the use of wastewater is very important.Materials and MethodsThis research was conducted in the research farm of Sari University of Agricultural Sciences and Natural Resources (SANRU), which has a silty clay soil texture. The latitude and longitude of the region are 36º 40ʹ N and 53º 04ʹ E, respectively. Its height above sea level is 21 meters. According to Demarten classification, Sari city has a temperate humid climate. The long-term average temperature of Sari is 11.18 °C and the total long-term rainfall is 780 mm. In order to evaluate the wastewater effects on soil chemical characteristics, microelements concentrations, heavy metals accumulation and Maize yield (Single Cross 704), an experiment was carried out as factorial based on a completely randomized design with treatments included; Water source factor (wastewater (A1), well water (A2)), Irrigation (subsurface method (I1) and (drip method (I2)) with three replication in 2018-2019 under lycimetric conditions, at the Sari Agriculture and Natural Resources University (SANRU), Iran.Results and DiscussionAccording to this study results, the effect of type of irrigation source on soil electrical conductivity, soil microelements and heavy metals accumulation of the soil was significantly different (P ≤ 0.01). The highest soil electrical conductivity with a value of 1.8 dS.m-1 was observed in the conditions of using treated wastewater. The highest amount of total nitrogen, phosphorus and potassium were related to the source of treated wastewater with values of 0.086, 24.2 and 222.2 mg.kg-1, respectively. The results showed that the accumulation of soil Pb (0.07) and Cd (0.014 mg.kg-1) in irrigation with treated wastewater increased compare to the well water source by 0.05 and 0.010 mg.kg-1, respectively. Also, the effect of irrigation method and the interaction effect of source and method irrigation on soil chemical characteristics, microelements concentration and heavy metals accumulation were not significant. The use of wastewater by increasing soil stability improves soil physical condition, increases soil fertility, increases photosynthetic products, increases the efficiency of plant photosynthetic system and ultimately improves plant growth. The use of subsurface irrigation resulted in a 67% increase in grain yield and 28% increase in biomass productivity compared to the drip method. Adequate nutrients during the reproductive growth stage of the plant play an important role in grain growth. Therefore, it can be said that the nutrients in the wastewater have increased the grain yield compared to using the well water source. Because the wastewater contains nutrients and micronutrients such as; nitrogen, phosphorus, potassium, calcium, zinc and iron were relative to the well water source and increased maize grain yield. The results showed that the use of effluent compared to well water, caused the absorption of more heavy metals lead and cadmium in the grain, leaf and stem of maize. Due to the use of wastewater water source, the amount of Pb uptake among different parts of the maize, with values of 27.2, 22.5 and 20.5 mg / g, respectively, related to the grain, leaf and stem. However, the uptake of Cd in the grains, leaves and stems was 2.32, 1.35 and 2.01 mg / g, respectively. According to the results, the high concentration of heavy metals Pb and Cd due to the use of wastewater in the grain sector directly threatens human health. Also, the concentration of heavy metals Pb and Cd in the leaf and stem parts of corn, by endangering the health of livestock and poultry, indirectly affects human health.ConclusionThe results showed that irrigation with treated wastewater due to its richness in nutrients and microelements, improves soil fertility and creates favorable conditions by increasing soil organic matter and mineral for plant growth. Also, according to the permissible threshold values of the concentration of heavy metals Pb and Cd in plants, the accumulation of heavy metals Pb and Cd in the grain, stem and leaf of single cross 704 corn, will not be a problem for consumers. Optimal use of wastewater can increase soil fertility and the ability of plants to absorb nutrients from the soil and ultimately increase plant yield.
L. Qasemi far; A. Golchin; F. Rakhsh
Abstract
Introduction: The accumulation of heavy metals in water, sediments, and soils has led to serious environmental problems. In recent years, several processes have been developed with the aim of reducing or recovering heavy metals from contaminated environments. Physical and chemical approaches are capable ...
Read More
Introduction: The accumulation of heavy metals in water, sediments, and soils has led to serious environmental problems. In recent years, several processes have been developed with the aim of reducing or recovering heavy metals from contaminated environments. Physical and chemical approaches are capable of removing a broad spectrum of contaminants, but the main disadvantages of these methods lie in the increased energy consumption and the need for additional chemicals. In recent years, the processes such as bioleaching, biosorption, bioremediation, phytoremediation, and bio precipitation are all based on the use of microorganisms that have the ability to solubilize, adsorb, or precipitate heavy metals. Therefore, it is necessary to find some solutions to reduce the negative effects of heavy metals in soil. Materials and Methods: A factorial experiment was conducted in the greenhouse of the Faculty of Agriculture, the University of Zanjan, using a completely randomized design with three replications. In this experiment, the effects of different levels of soil cadmium (0, 5, 10, 25, and 50 mg/Kg) and soil inoculation (without inoculation and inoculation with Glomus mosseae, Glomus intraradices, Glomus mosseae + Rhizobium trifolii, Glomus intraradices + Rhizobium trifolii bacterium, Rhizobium trifolii, Glomus mosseae + Glomus intraradices and Glomus mosseae + Glomus intraradices + Rhizobium trifolii) on growth of berseem clover were assessed. Results and Discussion: The results of this study showed that the soil cadmium levels has a significant effect (p < 0.05 and p < 0.01) on fresh weights of aerial parts and roots, height, number of the plant in the pot, Fe, Zn and Cd concentrations in aerial parts and roots of berseem clover. The fresh weights of aerial parts and roots, height, number of the plant in the pot, Fe and Zn concentrations in aerial parts and roots of berseem clover decreased as the levels of soil cadmium increased. The lowest concentrations of iron and zinc were measured in treatment with 100 mg Cd/Kg. Also, Cd concentration in aerial parts and roots increased as the level of soil cadmium increased. The results of this experiment showed that soil inoculation with mycorrhizal fungi and Rihzobium trifolii had a significant effect (p < 0.05 and p < 0.01) on fresh weights of aerial parts and roots, height, number of plant per pot, Fe, Zn and Cd concentrations in aerial parts and roots of berseem clover. The inoculation of soil with mycorrhizal fungi and Rhizobium trifolii increased the fresh weights of aerial parts and roots, height and No. of plant per pot. The highest fresh weights of aerial parts and roots of berseem clover, height, and number of plant per pot were obtained in treatments co-inoculated with Glomus mosseae and Rhizobium trifolii. The highest and lowest concentrations of iron and zinc in aerial parts and roots of berseem clover were measured, respectively, for the treatment co-inoculated by Glomus mosseae and Rhizobium trifolii and control treatment (without inoculation). However, the opposite trends were found in Cd concentrations in the plant. The highest and lowest Cd concentrations in aerial parts and roots were measured in control treatment (without inoculation) and treatment co-inoculated by Glomus mosseae and Rhizobium trifolii (MT), respectively. Conclusion: Bioremediation and phytoremediation are considered as two very safe and necessary technologies which naturally occur in the soil by microbes and plants and pose no hazard to the environment and the people life. The procedure of bioremediation and phytoremediation can be simply carried out on site without initiating a major disruption of normal actions and threating the human life and the environment during transportation. Bioremediation and phytoremediation are used less than other technologies for cleaning-up the wastes and contaminated soils. Microorganisms and plants possess inherent biological mechanisms that enable them to survive under heavy metal stress and remove the metals from the environment. These microbes use various processes such as precipitation, biosorption, enzymatic transformation of metals, complexation and phytoremediation techniques of which phytoextraction and phytostabilization have been very effective. However, environmental conditions need to be adequate for effective bioremediation. The use of hyperaccumulator plants to remediate contaminated sites depends on the quantity of metal at that site and the type of soil. The results of this experiment showed that the Rhizobium trifolii and Glomus mosseae could be used to reduce the soil cadmium contamination. Also, the berseem clover is a hyperaccumulator plant for phytoremediation of cadmium in soils. According to the results of this study, co-inoculation of mycorrhizal fungus Glomus mosseae and Rhizobium trifolii can be recommended to improve the yield and uptake of micronutrients such as iron and zinc in cadmium contaminated soils.
N. Tabarteh Farahani; A.HA.H. Baghaie
Abstract
Introduction: Lead (Pb) is of great concern in environment because of its toxicity to animals and humans. Lead is a cumulative toxin and known carcinogen. Although, plants do not require Pb for growth, the bioaccumulation index of Pb in plants exceeds that of most other trace elements. It is therefore ...
Read More
Introduction: Lead (Pb) is of great concern in environment because of its toxicity to animals and humans. Lead is a cumulative toxin and known carcinogen. Although, plants do not require Pb for growth, the bioaccumulation index of Pb in plants exceeds that of most other trace elements. It is therefore important to control Pb concentration in plants, especially in the edible parts of crops to ensure food safety. There are many factors that control Pb accumulation and availability to plants in agricultural soils such as Pb source, Pb loading rate, soil pH, soil cation change capacity (CEC), chloride concentration in soil solution and soil organic matter content. These are important factors that should be considered for evaluating Pb phyto-availability. In addition, element interactions can also affect the elements uptake. Thus, this study was performed to investigate the effect of converter sludge-enriched cow manure on the changes in corn Pb uptake in a Pb-polluted soil under greenhouse condition.
Materials and Methods: This pot experiment was conducted under greenhouse condition around the city of Arak, using a Fine loamy, mixed and thermic, Typic Haplargids soil. A factorial experiment with a randomized complete block design with 24 treatments in three replications was carried out. The treatments consisted of applying enriched cow manure (0, 15 and 30 t ha-1) with 0% and 5% pure Fe from converter. To investigate the effect of converter sludge-enriched cow manure on the changes in corn Pb uptake, a non-saline soil with low carbon percentage was selected. The soil was polluted with Pb from Pb(NO3)2 source at the concentrations of 0, 200, 300 and 400 mg Pb kg-1 soil and incubated for one month. Cow manure was produced in a local farm and aged for two years before the experiment. The cow manure was enriched with converter sludge and incubated for three months in room temperature. Then, the enriched cow manure was added to the Pb polluted soil and corn (Zea mays L. single grass 704) seeds were sown. After 60 days from the experiment, soil physio-chemical properties and soil and plant Pb concentration were measured.
Results and Discussion: The greatest and least DTPA-extractable-Pb were determined in the polluted soil (400 mg Pb) without applying cow manure and the polluted soil (200 mg Pb) treated with 30 t ha-1 enriched cow manure, respectively. The DTPA-extractable-Pb in uncontaminated soils was not detectable by atomic absorption spectroscopy (AAS). Increasing the amount of cow manure caused a significant reduction in DTPA-extractable-Pb as applying 15 and 30 t ha-1 cow manure in a polluted soil (300 mg Pb) resulted in a significant decrease in DTPA-extractable-Pb by 11.9 and 23.4 units, respectively. This can be accounted for by the role of organic and inorganic fractions of cow manure in decreasing soil Pb availability. Interactions between Fe and Pb appear to influence the soil Pb availability as application of 15 and 30 t ha-1 converter sludge-enriched cow manure in 300 mg Pb-polluted soil caused a significant decline in soil Pb availability by 10.4 and 9.3 units, respectively. The highest and least root Pb concentration were observed in the polluted soil (400 mg Pb) without applying cow manure and the polluted soil (200 mg Pb) treated with 30 t ha-1 enriched cow manure, respectively. The corn root Pb concentration in unpolluted soils was not detectable by AAS. Applying 5% (W/W) pure Fe from converter sludge in the polluted soil (300 and 400 mg Pb) which were not manured significantly decreased the root Pb concentration by 19 and 9 units, respectively which is explainable by the interaction existing between Pb and Fe in soil. Furthermore, root Pb concentration was affected by converter sludge enriched-cow manure as applying 15 and 30 t ha-1 converter sludge cow manure in a polluted soil (400 mg Pb) significantly decreased the root Pb concentration by 20.8 and 10.9 units, respectively. However, the role of cow manure in increasing pH and decreasing root Pb concentration cannot be ignored. The greatest and least shoot Pb concentration was obtained for the polluted soil (400 mg Pb) without applying cow manure and the polluted soil (200 mg Pb) treated with 30 t ha-1 enriched cow manure, respectively. The corn shoot Pb concentration in unpolluted soils was not detectable by atomic absorption spectroscopy (AAS). Interaction effects were also observed for shoot Pb concentration as using 5% (W/W) pure Fe from converter sludge in the polluted soil (300 and 400 mg Pb) which were not treated by cow manure significantly decreased the shoot Pb concentration by 4.1 and 4.7 units, respectively.
Conclusion: The results of this study showed that interactions between Pb and Fe seem to play an important role in reducing root and shoot Pb concentration. On the other hand, applying cow manure can increase the soil sorption properties such as CEC and decrease the soil Pb availability and plant Pb uptake which is explainable by the fact that the organic and inorganic fractions of manure impact the Pb availability. However, the influences of soil physico-chemical properties such as pH upon soil Pb availability should be taken into account.
M. Biria; Abdulamir Moezzi; H. AmeriKhah
Abstract
Introduction: Among wide variety of soil pollutants including heavy metals, acidic precipitation and other toxicants, the importance of heavy metals due to their pollution capacity has received growing attention in recent years. These metals enters into soil through municipal and industrial sewage as ...
Read More
Introduction: Among wide variety of soil pollutants including heavy metals, acidic precipitation and other toxicants, the importance of heavy metals due to their pollution capacity has received growing attention in recent years. These metals enters into soil through municipal and industrial sewage as well as direct application of fertilizer and pesticides. High cadmium and lead concentration in soil lead to severe environmental pollution. Such pollution not only has a destructive effect on crop yield but also endangers human being and other creatures’ health after entering in their food chain. Several physical, chemical and biological methods used to reduce the adverse effect of high concentration of heavy metals in soil. In spite of the hight cost, these methods are not always suitable for reclamation of small area and mostly have side effect on physico-chemical and biological characters of soil, after application. Biochar produced by thermal decomposition of biomass in the absence or presence of low oxygen. These material due to their high spacific surface area and high cation exchange capacity may have great ability to absorb charged material including heavy metals. Therefore in this study attempt is made to evaluate the effect of sugarcane bagasse –derived biochar in improving maize plant growth in cadmium and lead contaminated soils.
Material and methods: This study was carried out during the year 2014 in two separate experiments in Shahid Chamran university. The treatments in each case consisted of two levels of sugarcane bagasse made biochar (0 and 4 percent by weight) in combination with each soil, properly contaminated with 50 and 100 mg cadmium per kg soil in first experiment and 500 and 1000 mg lead per kg soil in the second. The treated soils were applied to pot and arranged in a complete randomized block designe and replicated 3 times. Prior to introduction of soil to pots, the heavy metal contaminated soils with moisture content around 70 percent of F.C. were incubated for 30 days. During incubation period sugarcane bagasse was dried, milled, sieved, compacted and subjected to traditional furnace at 550 oc for 3 hours on low pyrolysis. The furnace temperature was controlled manually using lesser thermometer. The furnace cooled down and the collected sugarcane bagasse made biochar sieved again. The incubated soil mixed with proper amount of sugarcane bagasse made biochar and incubated under previous condition for 45 days. The treated soils were poured to the labeled pots and 3 maize seeds were sown in each pot and two weeks after emergence thinned to one plant per pot. Nineteen days after sowing, the height of the plants and chlorophyll index were recorded and plants were harvested and leaf area of each plant was recorded, maize root content of each pot were carefully separated from soil and along with shoot property washed, dried, weighed and after milling subjected to chemical analysis. Prior to sowing maize seeds some of physic- chemical properties of untreated soil were estimated. Furthermore few charactoristics of sugarcane bagasse made biochar including pH and EC in 1 : 10 solution of biochar to water recorded. N, C, H, O concentration were estimated by elementary analyzer. Cation exchange capacity of sugarcane bagasse made biochar was measured by ammonium acetate method. Moreover its functional group determined by FT-IR method. Specific surface area estimated as per Branuar Emmet Teller (BET) method. Sugarcane bagasse made biochar image was obtained from scanning electron microscope. Cadmium and lead concentration in root and shoots were estimated by atomic absorption spectrometer after wet digestion. SAS software was used for statistical analysis data which fallowed by Duncan test to compare the mean values.
Results and discussion: The results showed that implementation of cadmium and lead led to decrease in chlorophyll index, leaf area, height of plant and root and shoot dry weight significantly. But the sharp decline in the concentration of cadmium and lead in root and shoot after sugarcane bagasse made biochar application improved chlorophyll index, leaf area, height of plant, root and shoot dry weight. Application of 4% Sugarcane bagasse made biochar, decreased transfer factor (TF) and bioaccumulation factor (BF) of these elements compared to control. The results showed high capability of sugarcane bagasse made biochar to absorb cadmuim and lead and reduce their availability to plant respectively. In fact application of sugarcane bagasse made biochar dwindled cadmium and lead absorption as well as their transfer factor and bioaccumulation factor, and hence improved plant growth.
Conclusion: The results obtained after sugarcane bagasse made biochar application mainly initiated due to high cation exchange capacity of which eventually was created by large number of functional groups in its high specific surface area (table 2) to stabilize cadmium and lead and render them unavailable to plant and hence improve its growth.
sh. jorkesh; Mohammad hasan Salehi; I. Esfandiarpour
Abstract
One of the most important soil contaminants are heavy metals. Chemical analysis of the samples can be used to evaluate the contamination but these methods are expensive and time consuming. Thus, for rapid evaluation, other techniques such as magnetic susceptibility are considered. The aim of this study ...
Read More
One of the most important soil contaminants are heavy metals. Chemical analysis of the samples can be used to evaluate the contamination but these methods are expensive and time consuming. Thus, for rapid evaluation, other techniques such as magnetic susceptibility are considered. The aim of this study was to compare the spatial distribution of magnetic susceptibilityand cadmium, lead, nickel and copper in soil series of Isfahan, Khomeinishahr and Zayanderood in Lenjan at region, Isfahan province. Estimation of heavy metals via pedotransfer functions using magnetic susceptibility was also investigated. Total concentration of Cd, Pb, Ni and Cu in soil samples was determines and the magnetic susceptibility of the samples was also measured. Results showed magnetic susceptibility does not have high accuracy for estimation of heavy metals contents in the soils of this region. On the other hand, similar trends of continuous maps for heavy metals and magnetic susceptibility suggest that magnetic susceptibility can be a good indicator for trend of soil contamination in this area.