A. Fallah Nosrat Abad; M. Habibi
Abstract
Introduction: According to WHO and FAO studies, the diseases caused by contaminated foods are of the most widespread threats to human health in developing and developed countries. Therefore, in recent years, researchers have been trying to use soil microorganisms to solve this problem and maintain the ...
Read More
Introduction: According to WHO and FAO studies, the diseases caused by contaminated foods are of the most widespread threats to human health in developing and developed countries. Therefore, in recent years, researchers have been trying to use soil microorganisms to solve this problem and maintain the health of plants and the environment. Phosphorus after nitrogen, is a major macronutrient in plants which controls the growth, seeding and fruit production and involves in basic biological functions such as cell division, nucleic acids synthesis, photosynthesis and respiration and energy transfer. However, high amount of soluble inorganic phosphate is annually applied to the soil as chemical fertilizer but a large portion of it is immobilized rapidly after application due to phosphate fixation by aluminum, calcium, iron, magnesium and soil colloids and becomes unavailable to plants. The use of biological agents especially phosphate solubilizing microorganisms, can play an important role in supplying plant nutrients and improves crop health and productivity without causing any harm in agricultural and natural ecosystems. Bacteria and fungi are the two important groups of phosphate solubilizing microorganisms. Phosphate solubilizing bacteria in soil include Rhizobium, Bacillus, Pseudomonas, Agrobacterium, Achromobacter, Enterobacter and Burkholderia, and the most important ones i.e., Bacillus sp. and Pseudomonas flourescens. Material and Methods: In order to evaluate the effect of Thiobacillus, sulfur and phosphorus applicationon population of phosphate solubilizing bacteria in soil, a field experiment was conducted at Zarghan Agricultural and Natural Resources Research Center of Iran in a factorial, based on complete randomized block design with 3 replications. Treatments consisted of three levels of sulfur fertilizer with biofertilizer containing Thiobacillus bacteria (without sulfur and biofertilizer containing Thiobacillus (S0), application of 500 kg S + 10 kg biofertilizer containing Thiobacillus (S1), 1000 kg S + 20 kg biofertilizer containing Thiobacillus (S2) and 2000 kg S + 40 kg biofertilizer containing Thiobacillus (S3) per hectare), three levels of triple super phosphate (without phosphorus (P0), 100% (P1) and 65% (P2) percent phosphorus recommended based on the soil test) in two corn planted and not planted states. After harvesting, 72 soil samples were collected from each plot and transferred to the biology laboratory of soil and water research institute of Karaj. Soil samples were stored in sterile conditions at 4◦C. In order to isolate phosphate solubilizing bacteria, 10 gram of soil from each sample was suspended in 90 ml of sterilized water to make 1:10 dilution. Then, series of dilution were made (101 – 107) and 0.1 ml of suspensions of the diluted soil sample were transferred to petri dishes containing pikovskaya medium and incubated at 28- 30˚C. To identify PSP from halos surrounding characterized colonies was used and counting was performed 1-14 days after cultivation. The colonies were isolated on the basis morphological characteristics such as shape, color and size and then purified by linear culture. Finally, 60 strains were purified that were used to compare phosphate solubilizing capability. Results and Discussion: The results of this study showed that the main and interaction effects of sulfur fertilizer and biofertilizer treatments of Thiobacillus, phosphorus and plants on the population of phosphate-solubilizing bacteria (cells per gram of dry soil) in Pikovskaya medium were significant at 0.01 level probability. The highest population of bacteria was obtained at the lowest level (S1). Increasing the level of sulfur fertilizer and Thiobacillus biofertilizer decreased the population of phosphate-solubilizing bacteria and the highest level of sulfur and Thiobacillus biofertilizer led to the lowest bacterial population. Also, the study of phosphorus application on the bacterial population showed that phosphorus fertilizer at both levels significantly increased the bacterial population compared to the control (no application phosphorus). The best fertilizer treatment for phosphorus application was P1 which had the greatest effect on bacterial population compared to P2 treatment in Pikovskaya environment. In this experiment, the population of bacteria in corn planted conditions was higher than in non-planted conditions and this population increase was observed in almost all different levels of sulfur and phosphorus fertilizers. The highest bacterial population was observed in combined treatment of S1P2 under corn planted conditions. The results of microscopic, physiological and biochemical tests of the strains showed that all 60 bacterial strains were capable to form clear zone in Pikovskaya medium. Among them, 15 strains (7, 3, 2 and 3 strains belonging to Bacillus megaterium, Bacillus subtilis, Bacillus cereus and Pseudomonas fluorescent, respectively) had higher phosphate solubility than the others.
atena mirbolook; Mirhasan Rasouli-Sadaghiani; E. Sepehr; A. Lakzian; M. Hakimi
Abstract
Introduction: Iron (Fe) is an important micronutrient that plays a role in several crop physiological processes such as photosynthesis, respiration, and synthesis of heme proteins, DNA, RNA, and hormones. The most common Fe source used in agriculture is Fe-EDDHA. However, the usage of this chelate may ...
Read More
Introduction: Iron (Fe) is an important micronutrient that plays a role in several crop physiological processes such as photosynthesis, respiration, and synthesis of heme proteins, DNA, RNA, and hormones. The most common Fe source used in agriculture is Fe-EDDHA. However, the usage of this chelate may be problematic for plant growth. In the recent years, organic chelates have gained attention as they increase the microelements solubility and prevent iron precipitation in nutrient solution. Organic chelates such as amino acids and polysaccharides have many physicochemical (reactive OH, COOH and NH2 groups) and biological (biocompatible and biodegradable) properties that make these attractive materials usable for the agricultural practice. Biodegradability, low toxicity, immune system stimulation, the ability to coordinate metal, less sensitivity to photodegradation, and the effect on physical properties of rhizosphere and root growth dynamic are ideal properties of these components. The objective of this study was to evaluate Fe-organic-chelates efficiency as Fe sources for bean (Strategy I) and corn (Strategy II) growth in the hydroponic system. Materials and Methods: In this research, we synthesized Fe-amino acid chelates including Fe-Glycine (Fe-Gly), Fe-Phenylalanine (Fe-Phe), Fe-Tyrosine (Fe-Tyr), Fe-Methionine (Fe-Met), and Fe chitosan chelates in two forms of acidic hydrolyzed chitosan [Fe-C(A.hyd)] and enzymatic hydrolyzed chitosan [Fe-C(E.hyd)] and characterized by FTIR and CHN analyzer. The efficiency of these iron sources for bean (Strategy II) and corn (Strategy I) in hydroponic system was then evaluated. Seeds of bean and corn were washed with distilled water and transplanted into special containers containing coco peat, perlite and vermicompost (1:1:1) at 25 °C for germination and initial growth. The seedlings were transferred to polyethylene plastic lids fitting tightly over 8-L polyethylene containers under controlled conditions in the greenhouse with a light period of 8 hours per day, the temperature of 20 to 25°C and relative humidity of 65 to 75%. The pots were stacked in black color to prevent light reaching the root of the plant and the solution. In each pot, one plant seedling was placed and the basic nutrient solution was prepared in deionized water. The plants were harvested after 8 weeks, their root and shoot were separated and dried after washing with distilled water in an oven at 75 ° C. The dried samples were ground to fine powder to pass through a 20-mesh sieve. The analysis of Fe in samples was performed using atomic absorption spectrophotometer. Result and Discussion: Application of organic chelates of amino acids and chitosan increased the shoot dry matter per plant compared to Fe-EDDHA. Fe content in shoot of corn and bean was highest using Fe-Tyr, Fe-Met and [Fe-C(A.hyd)]. Uptake and accumulation of Fe in roots were observed by using all chelates, but the highest translocation factor was found for the treatments including [Fe-C(A.hyd)] and Fe-Tyr. Translocation factor in bean plants was higher than corn, and around half of Fe in bean plants was translocated from root to shoot. The use of iron chelates in plant growth medium increased the activity of ferric chelates reductase enzymes in bean and corn compared to Fe-EDDHA. However, the mean of this enzyme activity in bean was higher than that in corn. Therefore, the activity of this enzyme can be used as an indicator for determining the iron availability in leaf cells in Strategy I and Strategy II plants. In general, the plants need less energy to absorb Fe when the chelates with a simpler structure are used. Conclusion: The results indicated that using Fe organic chelates in the hydroponic system could supply sufficient amounts of iron for the plant uptake and also improve the root and the shoot growth of bean and corn. Overall, the effect of Fe organic chelates on Fe content of bean and corn shoots was in the following order: Fe- Chi(A.hyd) > Fe-Tyr > Fe-Met > Fe-Gly >. Activity of leaf ferric chelate reductase in bean was higher than that in corn.
Akbar Hassani; Maryam Etemadian; mehdi nourzadeh haddad; Mehrdad Hanifeie
Abstract
Introduction: In calcareous soils of Iran, using fertilizers that reduce soil pH over long periods are prioritized. Reducing pH in calcareous soils increases the concentration of essential nutrients such as phosphorus, iron, zinc, copper and manganese in the soil solution. The use of organic and inorganic ...
Read More
Introduction: In calcareous soils of Iran, using fertilizers that reduce soil pH over long periods are prioritized. Reducing pH in calcareous soils increases the concentration of essential nutrients such as phosphorus, iron, zinc, copper and manganese in the soil solution. The use of organic and inorganic acids in calcareous soils may also have other advantages in addition to gradually decreasing the soil solution pH. The effect of organic and minerals acids on plant growth and uptake of essential nutrients has not been studied. The aim of this study was to evaluate the effect of organic acids like acetic, citric and oxalic acid and mineral acids like sulfuric on the growth of forage corn.
Materials and Methods: The experiment was based on randomized complete block design and carried out in pots in a greenhouse. A calcareous soil with electrical conductivity of 0.86 dS m-1 and organic matter of 4.3 g kg-1 was collected from research farm of University of Zanjan. Treatments were T1 & T2: citric acid with concentration of 5 and 10 mM (C5 & C10), T3 & T4: acetic acid at a concentration of 5 and 10 mM (A5 & A10), T5 & T6: oxalic acid at a concentration of 5 and 10 mM (O5 & O10), T7: mixture of citric, acetic and oxalic acid each at a concentration of 3.33 mM (mix):, T8: sulfuric acid at a concentration of 5 mM (S), and T9: control. Treatments were applied in three stages: immediately after sowing, four-leaf and eight-leaf stages. Irrigation of pots was done with water with EC value of 400 μS /cm. Considering the possible effect of acids on increasing the availability of phosphorus, potassium, iron, zinc, copper and manganese, fertilization was done only based on nitrogen demand and 0.55 g urea was added to each pot (equivalent to 200 kg ha-1) with irrigation water in three steps. The shoots of plant samples were harvested after 50 days and the roots were carefully removed from the soil. Some growth related characteristics such as stem height, fresh weight, dry weight, and moisture content of vegetable tissue were also measured. Concentration of nitrogen, potassium, phosphorous, iron, zinc, manganese and copper in roots and shoots was measured. Translocation factor (TF) indicating the transfer rate of the elements from root to shoot was obtained by dividing the concentration of the element in the shoot by that in the root.
Results and Discussion: The results showed the significant effects of the treatments on the growth factor (fresh weight, dry weight and plant height). The percentage of moisture content was the same in all treatments. Citric acid treatment (T2) significantly increased fresh weight of shoot (18.3 percent) and dry weight (20.9 percent) of the plant. Organic acids also increased the concentration of nitrogen in shoots and roots. The concentration of nitrogen in the shoots was roughly twice as compared with that in the plant root. As for the potassium treatments, except for A10 treatment (T4) (the lowest concentration), other treatments did not show a significant difference with control. The highest concentration of potassium in roots was observed in sulfuric acid treatment (T8). The highest translocation factor of potassium (3.34) was observed in O10 treatment (T6). The results indicated a positive effect of 5 mM citric acid, acetic acid, mix treatment and sulfuric acid on shoot phosphorus and the positive effect of acetic acid and mix treatment on the phosphorus root. Citric acid treatments (T1 and T2) were the most effective treatments in increasing the concentration of iron (289 mg kg-1) in shoots. For roots, C10 treatment (T2) and Mix treatment (T7) showed the highest iron concentration. The highest TF for iron was observed in A10 treatment (T4). Acetic acid treatments (both concentrations), and sulfuric acid were more effective than other treatments and significantly increased the manganese concentration of the shoots. Sulfuric acid also caused a significant increase in the manganese concentration of the root. Acetic acid treatment (T5) showed the highest amount of TF for manganese. The amount of zinc element in shoots and roots was significantly affected by the mix treatment (T7). There was no significant difference between all Cu treatments.
Conclusions: In general, application of citric acid in both concentrations is useful to increase the biological yield and product quantity in maize farms. These treatments increased fresh and dry weight of shoots and roots. Acetic acid seems to improve translocation of elements in plants. The use of other acids is likely to enhance concentration of nutritional elements in roots and shoots.
Hossein Dehghanisanij; Elahe Kanani; samira akhavan
Abstract
Introduction: Partitioning of evapotranspiration (ET) into evaporation from the soil (E) and transpiration through the stomata of plants (T) is important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally, T is the desired component with the water ...
Read More
Introduction: Partitioning of evapotranspiration (ET) into evaporation from the soil (E) and transpiration through the stomata of plants (T) is important in order to assess biomass production and the allocation of increasingly scarce water resources. Generally, T is the desired component with the water being used to enhance plant productivity; whereas, E is considered a source of water loss or inefficiency, and is the basis of the management and organization of water resources. The present investigation was carried out with the objectives evaluation of corn evapotranspiration and its components and relationship between leaf area index and components in surface and subsurface drip irrigation systems.
Materials and Methods: The pilot farm were located in the water and soil department of the ministry of agriculture in Karaj, Iran (latitude of 51°38 ˊN and longitude of 35°21ˊ W, 1312.5 m above sea level). For implementation project was placed 8 volume micro-lysimeters in the soil, which were filled with soil excavated from the study site. The soil inside of micro-lysimeter and the soil of the surrounding study had the same physical-chemical characteristics. The corn was irrigated with surface drip (DI) and subsurface drip irrigation (SDI) system, that was installed just prior to planting in 2014 in a field that was planted to sprinkler-irrigated corn. Daily crop actual evapotranspiration (ETc) of each micro-lysimeter was calculated by applying the water balance method and soil evaporation was measured with micro-lysimeters. Finally, plant transpiration was calculated from difference between the actual evapotranspiration value and amount of evaporation from the soil surface. Leaf area index (LAI), was measured, and it was measured with the electronic leaf area-meter, CI – 202 seven times during the growing season. This method provides an indication of the plant growth.
Results and Discussion: The obtained results indicated that actual corn evapotranspiration was 377 and 371.92 mm for surface drip and subsurface drip irrigation systems, respectively. The value of corn evapotranspiration under surface drip and subsurface drip irrigation increased from initial, to middle season stages. The maximum daily values of ETc occurred on 48 days after planting in middle season stages. The total value of transpiration plant was 5.88, 76.82 and 118.21 mmd-1 for surface drip irrigation system and 12.78, 81.31 and 118.95 mmd-1 for subsurface drip irrigation system in the initial, advance, and middle season stages, respectively. Sum evaporation from the soil surface and crop transpiration was 200.81 and 176.02 mm for surface drip irrigation system and 213.04 and 158.81 mm for subsurface drip irrigation system. So, amount of evaporation from the soil surface was 73.02, 65.73 and 37.32 mm for surface drip irrigation system and 65, 58.83 and 34.98 mm for subsurface drip irrigation system in the initial, advance, and middle season stages, respectively. In surface drip and subsurface drip irrigation was allocated approximately 93 and 83 percent of evapotranspiration to evaporation from the soil surface respectively. The minimum daily values of E/ETc were 37 and 34 mm for surface drip and subsurface drip irrigation systems respectively, and occurred in middle season stages. Amount of transpiration was 5.88, 76.82 and 118.21 mm for surface drip irrigation system 12.78, 81.31 and 118.95 mm for subsurface drip irrigation for the initial, advance and middle season stages, respectively. The relationship between T/ETc and LAI was fitted to a polynomial equation with significant correlation coefficients, R2 = 0.95 and 0.89 for surface drip and subsurface drip irrigation systems, respectively. T/ETc started from 0 at sowing, and reached to its maximum at the middle growth stage or when LAI reached to about 3.0. Also, the relationship between E/ETc and LAI was fitted to a polynomial equation with significant correlation coefficients, R2 = 0.97 and 0.88 for surface drip and subsurface drip irrigation systems respectively, and reached to its minimum at the middle growth stage. Also the results showed that subsurface drip irrigation systems have higher biological yield and higher values for plant parameters in compared to surface drip irrigation system that it shows subsurface drip irrigation system due to evaporation reduction, better weed control and direct transport of water to the developmental zone has a significant role in increasing corn yield.
Conclusion: The results of this study indicated that soil evaporation losses in subsurface drip irrigation system had lower than surface drip irrigation system. Also, had higher transpiration in the growth season. This could perform important role on yield of crop. These results should help the precise planning and efficient management of irrigation for these crops in this region.
tahereh mansouri; Ahmad Golchin; Mohammad Babaakbari
Abstract
Introduction: Arsenic (As) is the twentieth element in earth's crust and the contamination of soils and ground waters by it is common and disturbing. In addition to geological factors and soil parent material, human activities such as mining and smelting, coal combustion and the use of arsenic-containing ...
Read More
Introduction: Arsenic (As) is the twentieth element in earth's crust and the contamination of soils and ground waters by it is common and disturbing. In addition to geological factors and soil parent material, human activities such as mining and smelting, coal combustion and the use of arsenic-containing compounds such as insecticides, pesticides, wood preservations and etc lead to the accumulation of high levels of this metal in the soils. Long-term exposure to As can lead to skin, bladder, lung, and prostate cancers.The presence of As in soil and water causes its transfer to different parts of the plant. Because of the crucial role of corn in human nutrition, investigation of the uptake, transport and accumulation of As in different parts of this plant is very important, thus this study was carried out with the aims of evaluating the response of corn to the presence of As in the environment and its impact on concentrations of phosphorus (P), iron (Fe), zinc (Zn) and manganese (Mn) in this plant.
Materials and Methods: Soil samples were collected and after air drying, passed through a 2 mm sieve and analyzed for some physico-chemical properties. The samples were then artificially contaminated by different levels of arsenic (0, 6, 12, 24, 48 and 96 mg/kg) using Na2HAsO4.7H2O salt and incubated for 6 months, and then planted to corn. Before planting, the concentration of available As was determined. At the end of growth period, mean height of plants was measured and then the above and below ground parts of plants were harvested, washed, dried and digested using a mixture of HNO3 and H2O2. The concentrations of As, P, Fe, Zn and Mn in plant extracts were measured. Statistical analyses of data were performed using SAS software and comparison of means carried out using Duncan's multiple range test.
Results and Discussion: The results indicated that As concentration increased both in root and in shoot with increasing As concentration. The highest As concentrations in corn root and shoot were 383.41 and 59.56 mg/kg, respectively. Arsenic accumulation in root was higher than the shoot, so that the concentrations of arsenic in the roots of plants grown at 6, 12, 24, 48 and 96 mg As/ kg of soil, were 1.88, 1.99, 3.13, 4.96 and 6.44 times higher than their concentrations in shoot, respectively. Corn was sensitive to As stress and growth of it reduced by increasing the level of soil As. Mean heights of plants grown in soils polluted with 6, 12, 24, 48 and 96 mg As/kg decreased compared to control by 10.74, 25.30, 38.99, 59.71 and 76.66%, respectively. The rate of reduction of dry weights of roots of plants grown in soils polluted with 6, 12, 24, 48 and 96 mg As/kg were 10.66, 30.20, 54.64, 81.65, 95.94 % and ones of shoot were 11.30, 27.25, 47.14, 77.66 and 95.22%, respectively, which showed corn root was more sensitive to As than shoot. Arsenic uptake by root and shoot increased with increasing the As levels to 48 and 24 mg/kg, respectively, but at higher levels of As it decreased, this showed that up to these levels, increasing arsenic concentrations in plant parts surpassed from the decreasing dry weights of them and the amount of uptake obtained by multiplying these two factors, increased. Phosphorus concentrations in root and shoot increased and decreased, respectively, with increasing soil As concentration, and this matter showed As reduced P translocation from the root to the shoot of plants. Iron and Zinc concentrations in root and shoot decreased but Manganese concentration increased with increasing soil As concentration.
Conclusions: The results of this study showed that the corn plant is very sensitive to arsenic and its growth decreased even in the presence of low concentrations of arsenic. Arsenic accumulation in root was higher than the shoot. Arsenic changed the concentration of nutrients in the soil and the corn, So that increased the available P concentration and reduced the available concentrations Fe, Zn and Mn. It also reduced the translocation of P, the concentration of Fe and Zn in the root and shoot. The statement that toxicity limits plant As uptake to safe levels was not confirmed in our study. If corn plants are exposed to a large concentration of As, they may accumulate residues which are unacceptable for animal and human consumption.
Akram Farshadirad; Alireza Hosseinpour; Shojae ghorbani; hamidreza motaghian
Abstract
Introduction: In recent years, because of the presence of industrial factories around the Isfahan province of Iran and high concentrations of heavy metals in the vicinity of them, and the gradual accumulation of heavy metals from various sources of pollution in urban areas over time, including gasoline ...
Read More
Introduction: In recent years, because of the presence of industrial factories around the Isfahan province of Iran and high concentrations of heavy metals in the vicinity of them, and the gradual accumulation of heavy metals from various sources of pollution in urban areas over time, including gasoline combustion, and use of urban waste compost and sewage sludge as fertilizer, there has been widespread concerned regarding the human health problems with increasing heavy metals in soils around the Isfahan city. The variation of composition in the soil matrix may lead to variation of composition and behavior of soil heavy metals. Soil is a heterogeneous body of materials and soil components are obviously in interaction. Studies tacking this complexity often use aggregate measurements as surrogates of the complex soil matrix. So, it is important the understanding soil particle-size distribution of aggregates and its effects on heavy metal partitioning among the size fractions, the fate of metals and their toxicity potential in the soil environment. Therefore, the present study aimed to determine the Cu release potential from different size fractions of different polluted soils by different extractants and their availability for corn plant.
Materials and Methods: Five soil samples were collected from the surface soils (0–15 cm) of Isfahan province, in central of Iran. The soil samples were air-dried and ground to pass a 2-mm sieve for laboratory analysis. Air dried samples fractionated into four different aggregate size fractions 2.0–4.0 (large macro-aggregate), 0.25–2 (small macro-aggregate), 0.05–0.25 (micro-aggregate), and
leila zare; abdolmajid ronaghi; Seyed Ali Akbar Moosavi; Reza Ghasemi
Abstract
Introduction: Vermicompost is one of the important bio-fertilizer which is the product of the process of composting different organic wastes such as manures and crop residues using different earthworms. Vermicomposts, especially those are derived from animal wastes,contain the large amounts of nutrients ...
Read More
Introduction: Vermicompost is one of the important bio-fertilizer which is the product of the process of composting different organic wastes such as manures and crop residues using different earthworms. Vermicomposts, especially those are derived from animal wastes,contain the large amounts of nutrients compaired with the composts prepared from crop residues. Vermicomposts contain plant available form of nutrients such as nitrate nitrogen, exchangeable phosphorus and potassium, calcium and magnesium. Nowadays, the use of vermicompost in sustainable agriculture to improve the growth and quality of fruits and crops is very common. Drought occurs when the amount of moisture in soil and water resources and rainfall is less than what plants need for normal growth and function. Two thirds of farm lands in Iran have been located in arid and semi-arid regions with annual rainfall less than150 mm that has been distributed irregularly and unpredictable during growth season imposing water stress in most crops. It indicates the importance of water management and proposing different strategies for mitigating detrimental effect of water stress in croplands. Due to the fact that crops nutrient management under drought and water stress using organic fertilizers is an effective method in reaching to high yields in sustainable agriculture, the objective of the present study was to investigate the influence of vermicompost application on reducing the adverse effects of water stress on the growth and chemical composition of corn in a calcareous soil.
Materials and Methods: In order to study the influence of water stress and application of vermicompost on corn dry matter yield and nutrients concentration of corn shoot, a greenhouse factorial experiment (4×3) in completely randomized design with three replications was conducted in college of agriculture, Shiraz university, Shiraz, Iran. The factors consisted of four vermicompost levels (0, 10, 20 and30g kg-1soil equal to 0, 20, 40 and 60 Mg ha-1) and three moisture levels(100, 80and 60%of field capacity(FC)). The soil samples were collected (0-30 cm depth) from a calcareous soil (Fine, mixed, mesic, Typic, Calcixrepts), located at Bajgah, Shiraz, Iran. Soil samples were mixed thoroughly with different levels of vermicompost and transfred to plastic pots. Six corn seeds were planted in each pot and were thinned to three uniform plants, one week after germination. Eight weeks after germination, corn shoots were harvested, dried and recorded. Plant samples were grind using a portable grinder and transferred to the laboratory for chemical analysis. The collected data were statistically analysed using SAS software (9.1.3) package.
Results and Discussion: The results indicated that with increasing the levels of vermicompost, dry matter yield and concentrations of total nitrogen (TN), phosphorus (P), iron (Fe), copper(Cu) and zinc (Zn) in corn shoots were significantly increased. But, due to the antagonistic relationship between manganese (Mn) and Zn or Fe,concentrations of Mn were significantly decreased. However, the concentration of Mn was in the sufficiency range. The highest dry matter yield and concentrations of nitrogen and phosphorus in corn shoot was observed at 30 g kg-1 vermicompost treatment, with 19, 10 and 20 % increase (compared to the control), respectively. The application of 30 g kg-1 vermicompost increased the concentrations of Zn, Cu and Fe by 41%, 90% and 75%, respectively and concentration of Mn decreased by 11.88%, compared to the control. Increasing the levels of water stress increased significantly the concentration of nutrients in corn shoot due to the reduction of corn biomass. The highest increase in nutrient concentrations was observed at 60% FC moisture level. Nitrogen and phosphorus concentrations in corn shoots by 12.5and 22.5% and Zn, Cu, Fe and Mn by 25, 83, 43and29% were higher compared to those of control (100% FC), respectively. The interaction effects of water stress and vermicompost on the concentrations of shoot N and Cu were significant and both were incresead by simultanoeus application of vermicompost and levels of water stress. The applicaion of 30 g kg-1 vermicompost (about 60 ton ha-1) under 60% FC moisture level increased significantly dry matter yield and the concentrations of nitrogen, phosphorus, zinc, copper and iron in corn shoot by 29%,5.5%, 23, 110, 41 and 71 percent compared to the control, respectively. However, because of the antagonistic relationships,the iron or manganese concentrations were reduced, but were yet in the sufficiency range. The use of 30 g kg-1 vermicompost under 80% FC moisture level Also increased significantly the concentrations of nitrogen, phosphorus, zinc, iron and copper by 9, 23, 24, 59 and 43 percent compared to the control, respectively.
Conclusion: The applicaion of 30 g kg-1 vermicompost increased significantly dry matter yield and the concentration of nitrogen, phosphorus, zinc, copper and iron in corn shoot under water stress treatments. In conclusion, the application of vermicompost mitigated the detrimental effects of water stress on corn dry matter yield and concentration of nutrients due to the positive effects of compost on physical, chemical and biological properties of the calcareous soil.
farid feizolahpour; mehdi kouchakzadeh; fariborz abbasi; Mohammad nabi Gheibi; Rajab Choukan
Abstract
Introduction: Broadcast fertilization method increases fertilizer losses while results in lower nutrient absorption by plant roots. Fertigation is an effective method to increase water and fertilizer efficiency and to reduce the losses of nitrogen. Moreover, it allows farmers to apply the nutrients in ...
Read More
Introduction: Broadcast fertilization method increases fertilizer losses while results in lower nutrient absorption by plant roots. Fertigation is an effective method to increase water and fertilizer efficiency and to reduce the losses of nitrogen. Moreover, it allows farmers to apply the nutrients in splits and few amounts in response to crop needs. In the present study, a field experiment was conducted to investigate the effects of split application of fertilizer in furrow fertigation on nitrogen losses and corn yield.
Materials and Methods: Field experiments were carried out factorially in a randomized complete block design with four replicates. Experimental treatments were consisted of three fertilizer splits (two, three, and four splits) and three levels of urea fertilizer (60, 80 and 100% of required urea fertilizer), which compared with the common method (broadcasting fertilizer) as used by farmers in the fields. Experiments were conducted on a one hectare field in 120 meter long and open end furrows. During the crop season, Irrigation water was applied in the same way for all fertigation treatments and the third type of the WSC flumes was used to measure the amount of input and output water in irrigation events. Moreover, for determining the indexes of uniformity of water distribution in carrying out fertigation experiments, the amount of infiltration into the soil was calculated using the Kostiakov-Louis equation. The parameters of this equation were determined using the water volume balance method. Injection of Urea fertilizer was done by using 40-liter barrels were placed at the beginning of Furrows. In this study, the injection of fertilizers was applied in the last 10 to 20 minutes of irrigation time.
Results and Discussions: Results showed that water distribution uniformities of low quarter and low half in all tests were very high. Such that the water low quarter distribution uniformities for all treatments were between 90.5 to 98.3 percent and the low half distribution uniformities of water for different treatments were between 94.4 to 99.0 percent. So, according to the high water distribution uniformity and injecting fertilizer in 20-10 minutes at the end of irrigation, it should be stated that the distribution uniformities of fertilizer, used in the experiments, were high too. Statistical analysis showed that nitrogen usage amount and interaction of splits-usage rates of fertilizer had a significant influence on run-off nitrogen losses. The most nitrogen losses were achieved in treatment using 100 percent of fertilization recommendation and there were not significant differences between 60 and 80 percent of fertilization recommendation. It is nothworthy that, in addition to the nitrogen loss by surface runoff, nitrogen deep percolation losses always are also considered. In fertigation treatments, because of high rate of nitrogen injection in short intervals at the end of irrigations, the amount of nitrogen in the surface layer (20-0 cm) was significantly higher than the lower depths and this could led to low percolation losses of nitrogen, but the broadcast fertilization method provided the highest percent of remaining nitrogen in the soil after fertilization, which almost is unusable for plant and in the case of over irrigation or rainfall, the risk of groundwater pollution could be raised. Besides, the results showed that application of nitrogen in 4 splits provided more grain yield compared to the 3 splits level. Also, grain yield of corn increased significantly with increasing nitrogen rate application. The fertigation treatments had better performance of water and fertilizer application efficiencies compared to broadcast fertilization method. The most grain yield was achieved in the fifth treatment by application of 100 percent of fertilization usage recommendation in three splits.
Conclusion: In this study, the effect of furrow fertigation on nitrogen losses and corn yield was studied under different splits and amounts of fertilizer consumption. Eventually, fertigation treatments were compared with traditional treatments (fertilizer broadcasting method). According to the obtained results, evaluate the interactions of the effect of split × N usage showed that, the fourth treatment (60% of fertilizer application in 4 splits) can be suggested, owing to its lower N losses by runoff. In addition there were no statistical significant differences of grain yield between the fourth and fifth treatments (100% of fertilizer application in 3 splits). Consequently, it can be concluded that by the usage of 60 percent of the recommended fertilizer application in four equal splits during the growing season, the potential of environmental pollution will be reduced while achieving optimal performance.
alireza yazdanpanah; mohammad reza bakhtiyari
Abstract
Introduction: Corn is one of the most important agricultural products withhigh consumption different forms of usage asfood and fodder. Corn yield and its cultivation needs improvement especially in developing countries. In conventional fertilizing methods with centrifuge machines or hand fertilization, ...
Read More
Introduction: Corn is one of the most important agricultural products withhigh consumption different forms of usage asfood and fodder. Corn yield and its cultivation needs improvement especially in developing countries. In conventional fertilizing methods with centrifuge machines or hand fertilization, parts of the fertilizer lost through volatilization, leaching and weeds absorption. Leaf burning is also reported in this method. Fertilizer placement in bands is a method that does not show these disadvantages and improves fertilizer use efficiency for the crop. Therefore using new machines and new methods for fertilizing the crop,the cultivation area and mean of yield productioncan improved, for example the yield of corn in this research.
Material and Methods: This research was conducted in Lak Lak research farm in Asadabad district. Moldboard plowing plus disking was used for bed preparing the seeds anda 4 rows crop planter was used for planting the seeds.
For treatments conducting Combination machine that had designed in thisresearch station workshop was used. This machine was able to place Urea fertilizer with different methods (fertilizer drilling in the rills, fertilizer placement in one side and two sides of plants). The variety of corn that used for this experiment was SC704 with65000 plants in one hectareas plant density. After soil sampling nitrogen, phosphorous and potassium fertilizers and other fertilizers demands by means of soil testwere determined. Half of the nitrogen was used at planting time from source of urea and the other half was used as top dressing duringgrowth season due to treatments as follow:
90 kgha-1 nitrogen as broad costing
60 kgha-1 nitrogen as broad costing
30 kgha-1 nitrogen as broad costing
90 kgha-1 nitrogen as drilling in the rills
60 kgha-1 nitrogen as drilling in the rills
30 kgha-1 nitrogen as drilling in the rills
90 kgha-1 nitrogen as band placement in one side of the plants
60 kgha-1 nitrogen as band placement in one side of the plants
30 kgha-1 nitrogen as band placement in one side of the plants
90 kgha-1 nitrogen as band placement in two sides of the plants
60 kgha-1 nitrogen as band placement in two sides of the plants
30 kgha-1 nitrogen as band placement in two sides of the plants
The treatments were conducted through 7-9 leaf bearing stage of corn growth. After harvesting, the mean yield of each plot and other data of plant attributes were collected through growth season and leaf samples were collected for nitrogen analysis. All data were analyzed usingmeans of Duncan's test.
Result and Discussion: The results of experiment showed that, fertilizing method had no significant effect on plant height, maize height and percentage of corn cob at 1% level, but had a significant effect on corn yield at 1% level and on the weight of thousand kernels at 5% level. Also the effect of fertilizer amount on plant height, maize height and percentage of corn cob was not significant at 1% level. The interactional effect of method-amount was not significant on the corn attributes and weight of thousand kernels but was significant on the net yield of corn at 5% level. Comparison of means showed that although the treatment of fertilizer placement in two sides of plants with the amount of 90 kgha-1net nitrogen produced 10.98 tha-1corn yield but its difference with one side fertilizer placement, with the amount of 60 kgha-1 net nitrogen that produced 9.463 tha-1 corn yield, was not significant in 1% level. According to mean comparison table (table 3 and 4) it was clear that using 90 kgha-1 net nitrogen as band placement in two sides of plant row, produced the maximum yield of corn that was in the same group with 60 kgha-1 as band placement in one side of plant row. Therefore the treatment of 60 kgha-1as band placement waspreferred to othertreatments that reduces fertilizer usage and produces good amount of yield. The results of leaf analysis of corn in two years of experiment showed that the treatments effect on nitrogen concentration in corn leaf was significant.
Conclusion: Band placement of urea fertilizer from distance of 10 cm of plants and 5 cm in soil depth with amount of 60 kgha-1 as band placement in one side of plant row is recommended for corn through growth season. Band placement of urea is preferred to broadcasting method.
M. Gheysari; M.M. Majidi; seyed majid mirlatifi; M.J. Zareian; S. Amiri; S.M. Banifatemeh
Abstract
The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. ...
Read More
The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. To investigate the effects of four levels of irrigation under two different deficit irrigation managements on the root length of maize, a study was conducted in 2009. Irrigation managements included fixed irrigation interval-variable irrigation depth (M1) and variable irrigation interval-fixed irrigation depth (M2). Maize plants were planted in 120 large 110-liter containers in a strip-plot design in a randomized complete block with three replications. Root data sampling was done after root washing in five growth stages. The results showed that the effect of irrigation levels on root length was significant (P
mohammad karimi; J. Baghani; M. Joleini
Abstract
Introduction: One of the serious problems in the further development of maize cultivation is increasing irrigation efficiency. Using conventional irrigation causes a shortage of water resources to increase the acreage of the crop. With regard to the development of maize cultivation, agronomic and executable ...
Read More
Introduction: One of the serious problems in the further development of maize cultivation is increasing irrigation efficiency. Using conventional irrigation causes a shortage of water resources to increase the acreage of the crop. With regard to the development of maize cultivation, agronomic and executable methods must be studied to reduce water consumption. Using drip irrigation system is most suitable for row crops. Hamedi et al. (2005) compared drip (tape) and surface irrigation systems on yield of maize in different levels of water requirement and indicated that drip irrigation increases the amount of yield to 2015 kg/ha and water use efficiency to 3 time. Kohi et al. (2005) investigated the effects of deficit irrigation use of drip (tape) irrigation on water use efficiency on maize in planting of one and two rows. The results showed that maximum water use efficiency related to crop density, water requirement and planting pattern 85000, 125% and two rows, respectively with 1.46 kg/m3. Jafari and Ashrafi (2011) studied the effects of irrigation levels, plant density and planting pattern in drip irrigation (tape) on corn. The results showed that the amount of irrigation water and crop density on the level of 1% and their interactions and method of planting were significant at the 5 and 10% on water use efficiency, respectively. The yield was measured under different levels of irrigation, crop density and method of planting and the difference was significant on the level of 1%. Lamm et al. (1995) studied water requirement of maize in field with silt loam texture under sub drip irrigation and reported that water use reduced to 75%; but yield of maize remained at maximum amount of 12.5 t/ha. The objective of this study was to evaluate the drip (tape) irrigation method for corn production practices in the Qazvin province in Iran.
Materials and Methods: In this study, yield and yield components of corn (SC 704) were investigated under different levels of irrigation water in drip tape systems in one and two rows planting patterns with different plant densities. The experiment was conducted on randomized complete blocks as a split plot (Split block) design with 3 replicates in the Qazvin region. Four levels of irrigation including: 80, 100 and 120 percent of water requirement with drip irrigation (tape) and 100% water requirement with furrow irrigation (control treatment) as main plots and method of planting (one and two rows) with three levels of crop density including: 75000, 90000 and 105000 as subplots were considered. After harvesting, grain yield, number of rows per ear, number of kernels per ear row, number of grains per ear and 1000-kernel weigh were measured.
Results and Discussion: The results of simple variance analysis of attributes showed that the method of planting has a significant difference on the level of 5% for grain yield, but on the other the measured attributes did not have any significant effect. The respective effect of planting method and crop density showed a significant difference on the level of 5% for grain yield, number of kernels per ear and the 1000-grain weight, whereas it did not have any significant effect on the other measured attributes. The respective effects of irrigation method, planting method and crop density showed a significant difference on the level of 1% for the attributes of the number of kernels per ear. The planting in one row resulted in significantly higher grain yields than the other planting patterns. In mean comparisons of the interactions between irrigation methods, crop density and planting method, grain yield in drip irrigation at a level of 120% water requirement in the two rows planting pattern and crop density equal to 75000 plants was shown in the lead on the level of 10%. The results showed that the yields of the treatments were only affected by the method of planting and planting of one row lead the planting of two rows. According to means comparison and water use efficiency in each of the treatments and limitation of water resources, one row planting pattern with crop density equal to 90000 under drip irrigation at 80% and 120% (If there is no water restrictions) of water requirement were suitable.
Conclusion: According to the table of variance analysis, it can be seen that the effect of irrigation on corn grain yield was not significant. Research results of Sorensen and Butts (2005) and Azari et al. (2007) have also confirmed this subject. The grain yield in one row planting method was superior compared to two rows planting method. The superiority of one ton per hectare was statistically significant and substantial. Grain yields varied from 5360 to 12873 kg/ha among the treatments: in drip irrigation at a level of 120% water requirement in the two rows planting pattern and crop density equal to 75000 plants per hectare was 12873 kg/ha and the lowest yield was found in drip irrigation at a level of 80% water requirement in the two-row planting pattern and crop density equal to 75000 plants per hectare as 5360 kg/ha. With regard to mean comparisons of grain yield under the effects of interaction, and water use efficiency for each treatments, I1R1D2, I3R1D2, I1R1D1 and I2R2D3 treatments seem better than others.
Adel Reyhanitabar
Abstract
Knowledge about the P critical level and plant response to application of P can effectively help with the proper use of this element. In this study, P critical level for corn (Zea mays L.) was determined in 25 combined soils samples from corn fields of East Azerbaijan province during 2011-2012. Corn ...
Read More
Knowledge about the P critical level and plant response to application of P can effectively help with the proper use of this element. In this study, P critical level for corn (Zea mays L.) was determined in 25 combined soils samples from corn fields of East Azerbaijan province during 2011-2012. Corn have been cultivated in two level of P (zero and 40 mg P kg-1) as a factorial experiment in a randomized complete blokes design with three replications .After 60 days, the plant growth parameters in shoot and root were measured. According to the results, in studied soils, clay content ranged from 12.4 to 57.3 with a mean 31.1 %. Calcium carbonate equivalent ranged from 7 to 35 with a mean 21.5 % and active calcium carbonate ranged from 1.47 to 10.78 with a mean 5.1 %. Application of P significantly increased shoot and root dry weight and their P content. According to the results, applied phosphorus levels, soil type and their interaction had a significant effect on corn growth parameters. Critical level of soil P for corn with Olsen-P, based on 90% relative yield, was determined 12, 14.44 and 10.46 (mg P kg-1 soil) by using graphical Cate–Nelson, Cate–Nelson analysis of variance and Mitscherlich-Bray methods, respectively. Mitscherlich-Bray equation coefficient C1 and C2, for Olsen-P, were 0.0956 and 0.0073 (kg soil mg-1P) respectively. Dry weight of shoot was positively and significant correlated with Olsen –P.
samaneh ahmadi gheshlaghi
Abstract
Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and is a major component of soil organic matter, which plays an important role in soil aggregation and carbon sequestration. Glomalin is produced only by the AM fungi. On the other hand, stressful environments such as salinity ...
Read More
Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and is a major component of soil organic matter, which plays an important role in soil aggregation and carbon sequestration. Glomalin is produced only by the AM fungi. On the other hand, stressful environments such as salinity can affect the AM fungi .The purpose of this study was to investigate the effect of NaCl salinity on glomalin production by Glomerales in symbiosis with corn plant. A factorial experiment was conducted in completely-randomized design (CRD) with four replications in a greenhouse. Factors were NaCl salinity with three levels (S0: 1.34, S1:4 and S2: 8 dS/m) and mycorrhizal fungi with four levels (non mycorrhizal, Glomus versiforme, G. intraradices, G. etunicatum). The results showed that the interaction of salinity and mycorrhizal fungi on plant dry weight, leaf proline, root colonization percentage, EEG and TG was significant at p
S. Abdi; reza ghasemi; N.A. Karimian; M. Feizian
Abstract
Sum of exchangeable and solution forms of soil potassium is widely used to determine potassium availability for plants. Reliability of these methods is not enough in soils that contain 2:1 phyllosilicates. Additional to exchangeable potassium, nonexchamgeable potassium also has an important role in plant ...
Read More
Sum of exchangeable and solution forms of soil potassium is widely used to determine potassium availability for plants. Reliability of these methods is not enough in soils that contain 2:1 phyllosilicates. Additional to exchangeable potassium, nonexchamgeable potassium also has an important role in plant nutrition. Limited information about availability and release kinetics of nonexchangeable potassium in calcareous soils of Fars province is available. For this purpose, some extractants including ammonium acetate, boiling nitric acid, 0.1M nitric acid, 2M sodium chloride and water were evaluated to prediction of potassium availability for corn in 10 calcareous soils of Fars province. Release kinetics of nonexchangeable potassium was studied using 15 successive 15-min extraction with 0.01M calcium chloride. Kinetics models describing nonexchangeable potassium release rate including zero order, first order, second order, third order, parabolic diffusion, power function and ellovich were evaluated. Results showed that 1M neutral amonium acetate, 0.1M aitric acid, water and 2M sodium chloride extractants had high correlation with corn potassium uptake. Amount of potassium released among studied soils was vary in the range of 243 to 814 mg kg-1. According to R2 and SE, kinetics of nonexchangeable potassium release was described with power function, parabolic diffusion and ellovich equations satisfactorily. According to this fact that constant rate of parabolic diffusion and ellovich models had significant correlations with corn potassium uptake, it is recommended that these two models are suitable for use in these studied soils.
Y. Azimzadeh; H. Shariatmadari
Abstract
Phytoremediation is one of the lowest-cost methods for remediation of soils contaminated with heavy metals. This study was conducted to investigate the phytoremediation potential of corn and canola, grown under single and mixed culture systems. Thus, a pot experiment was carried out on a calcareous ...
Read More
Phytoremediation is one of the lowest-cost methods for remediation of soils contaminated with heavy metals. This study was conducted to investigate the phytoremediation potential of corn and canola, grown under single and mixed culture systems. Thus, a pot experiment was carried out on a calcareous soil contaminated by Pb and Zn. Treatments included single culture of corn, single culture of canola and mixed culture of corn and canola. Results showed that bioavailability of metals, lead, zinc, nickel and copper increased with decreasing soil pH and increasing DOC as influenced by root activity. Root uptake of metals; lead, zinc, copper and nickel in mixed culture, was more than that of in canola and lower than that of in corn. Zinc and nickel uptake by shoots of canola and mixed culture, were more than corn. Also, the results concerning the uptake of metals in the total biomass (sum of roots and shoots) showed uptake of copper and nickel in corn was more than mixed culture and it was more than canola while, uptake of lead and zinc in corn and mixed culture was more than canola. Also, the total yield of corn and canola in mixed culture increased. Therefore, it seems use of mixed culture system may extract metals, zinc and nickel more than corn, and copper more than canola, in single culture systems.
A. Abtahi; M. Hoodaji; M. Afyuni
Abstract
The objectives of this research were to study the effect of three kinds of biosolids applications such as urban compost, sewage sludge, cow manure and chemical fertilizers (sulphates of Zn, Fe) concentration on soil and corn plant. Two calcareous soils having different textures (sandy loam and clay loam) ...
Read More
The objectives of this research were to study the effect of three kinds of biosolids applications such as urban compost, sewage sludge, cow manure and chemical fertilizers (sulphates of Zn, Fe) concentration on soil and corn plant. Two calcareous soils having different textures (sandy loam and clay loam) were used in order to study the uptake of the above zinc and iron by corn. This study was carried out in pots in a greenhouse using a factorial experiment design which was block completely randomized and each treatment was replicated three times. The levels of biosolids used were 0, 25, 50 Mg ha-1 and chemical fertilizers applied were as (Zn and Fe) sulphates. Seventy five days after corn seeds were sown; young plants at 4 to 5 leaf stage were harvested and made ready for chemical analyses. Results of the soil analysis showed that in sewage sludge treatment (50 Mg ha-1) the CEC, and the DTPA extractable (Zn and Fe) increased significantly compared to control and other treatments in soils. Cow manure treatment (50 Mg ha-1) had a significant effect on OM, and EC. Result of the plant analysis showed that in the sewage sludge treatment the concentration of Zn in the roots, and the concentrations of Zn, Fe in the shoots increased significantly. In general, corn yields increased significantly in the sewage sludge treatment compared to the other treatments in clay loam soils. Generally, the results of this study showed that biosolid application including sewage sludge increased concentration of micronutrients (Zn and Fe) in soil and corn plant.
Saeid Boroomand Nasab; Mohammad javad khangani
Abstract
Deficit irrigation is an optimization strategy for water use efficiency in irrigation. This research was conducted to evaluation effect of deficit irrigation (DI) and partial root zone drying (PRD) on yield, yield components and water use efficiency of corn. Research was conducted on Shahid Bahonar University ...
Read More
Deficit irrigation is an optimization strategy for water use efficiency in irrigation. This research was conducted to evaluation effect of deficit irrigation (DI) and partial root zone drying (PRD) on yield, yield components and water use efficiency of corn. Research was conducted on Shahid Bahonar University of Kerman in the spring of 2010 using a completely randomized block design with one control, 18 deficit irrigation treatment and three blocks. Deficit irrigation treatments were included: mild water stress (irrigation with درصد75 ETP), high water stress (irrigation with %50 ETP), fixed every other furrow irrigation and three partial root zone drying (Change the wet furrows in every irrigation, Change the wet furrows in every other irrigation and change the wet furrows in every second irrigations). Every treatment was applied at three growth stages of corn (all periods of growth, vegetative growth stage and reproductive growth stage). The highest biological yield obtained 32431 and the lowest was 17654 kg per hectare. The highest grain yield was 12115 kg per hectare and the lowest was 7163. Water use efficiency (km grain yield per cubic meter of water) for the control treatment was equal to 1.16 and for partial root zone drying with change the wet furrows in every irrigation (14 days) in all periods of growth treatment was equal to 2.13. Results showed that partial root zone drying with one interval irrigation (14-day) was the best choice to apply deficit irrigation on corn.
S. Esfandyari; hossein dehghani; A. Alizadeh; K. Davary
Abstract
The present study was aimed to determine the effect of drip irrigation methods and nitrogen levels and their interaction on corn root development and study of the root movement model. For this purpose, a split plot field experiment based on randomized complete block with irrigation method in two levels ...
Read More
The present study was aimed to determine the effect of drip irrigation methods and nitrogen levels and their interaction on corn root development and study of the root movement model. For this purpose, a split plot field experiment based on randomized complete block with irrigation method in two levels (surface and subsurface drip) as main treatment and Nitrogen fertilization in two levels (50 and 100% of fertilizer requirement) as sub main treatment at 3 replications was conducted at Agricultural Engineering Research Institute, Karaj, Iran using corn variety 370 double-cross. Monitoring of root depth was performed by digging trenches and observation of soil profile. The samples were collected during the growing season with 10 day intervals (8 times totally) and root weight in different soil layers was measured by harvesting of soil monoliths and washing in plastic filters under water pressure. Results showed that the depth of root development up to 20 days after planting was significantly more in surface irrigation method compare to subsurface drip irrigation method; but it was not significant in 30 to 80 days after planting at 5% level. The depth of root development was not significantly different in different nitrogen levels in fertigation method at 5% level. Interaction of irrigation methods and nitrogen levels also didn’t show significant effect on depth of root development at different corn stages growth at 5% level. Root width development was not significantly different in all treatments. The most root distribution observed at 20 to 40 cm and 0 to 20 cm of soil layer in subsurface drip irrigation and subsurface drip irrigation methods, respectively. The lowest root density was observed at 40 to 60 cm soil layer in both studied irrigation methods. Also the roots were more uniformly distributed in soil in subsurface drip irrigation method compare to surface drip irrigation method. The most accurate root depth estimation was achieved by the linear, Borg & Grims and Cropwat models, respectively.
H. R. Boostani; abdolmajid ronaghi
Abstract
Sewage sludge (SS) as a source of required plant nutrients has been utilized in many countries for crops production. for investigation of SS application affect in compared to chemical fertilizer treatment (F), on dry matter yield (DMY) and concentration of some macro and micro nutrient in corn, a greenhouse ...
Read More
Sewage sludge (SS) as a source of required plant nutrients has been utilized in many countries for crops production. for investigation of SS application affect in compared to chemical fertilizer treatment (F), on dry matter yield (DMY) and concentration of some macro and micro nutrient in corn, a greenhouse experiment (5 × 3 factorial) arranged in a completely randomized design with three replicates was conducted. The first factor included SS levels (0, 10, 20, 40 and 80 gr kg-1 soil) and the second factor was soil textural classes (clay loam, sandy loam and sandy). A chemical fertilizer treatment was also used to compare its affect with that of SS application levels on growth and chemical composition of corn. For comparison of applied SS levels (one factor) with chemical fertilizer treatment in each soil textural classes was used from a completely randomized design with six treatment and three replicates. The results indicated that addition of SS significantly increased DMY of corn in all textures. Application of SS significantly increased N, P, Fe, Zn, Cu and Mn concentration in corn aerial parts and nutrients deficiencies symptoms disappeared. Nutrients concentrations in corn plants did not reach to toxic levels even at high rates of SS application and concentration of Cd and Pb were negligible and not detectable in shoot corn. Based on nutrient deficiency in calcareous soils especially Zn and Fe, application of SS for contrasting with shortage of these elements can be effective way to eliminate these nutrients shortage. In general, application of SS was superior to chemical fertilizer treatment in increasing concentration of nutrients and DMY of corn. Prior to any SS recommendations the results of this experiment needs to be verified under field conditions.
A. Mohseni; H. Mirseyed Hosseini; F. Abbasi
Abstract
Fertilizing method plays an important role in fertilizer and water use efficiency and plant yield and losses fertilizer. A field experiment was carried out at 16 treatments with factorial a complete randomized block design during 2010 for free drainage furrows. First factor was four levels of water (60, ...
Read More
Fertilizing method plays an important role in fertilizer and water use efficiency and plant yield and losses fertilizer. A field experiment was carried out at 16 treatments with factorial a complete randomized block design during 2010 for free drainage furrows. First factor was four levels of water (60, 80, 100 and 120% of full irrigation) and second factor was four levels of fertilizer (0, 60, 80 and 100% of required fertilizer) for fertigation method. The 16 treatments mentioned above, were compared with common fertilizing method. Nitrogen requirement was applied in four stages of the growth: before cultivation, in seven leaves, shooting and earring stages, the first portion (before cultivation) was applied by manual distribution and others by fertigation. In conventional treatment, the whole of required fertilizer was used in two split applications (before planting and in seven leaves). Results showed, the highest yield, yield component and use efficiency of corn was obtained on 100% irrigation and 100% fertilizer treatments. While the highest amount percolation of nitrate into soil was related to conventional treatment.