Soil science
F. Rakhsh; A. Golchin; A. Beheshti Ale Agha
Abstract
Introduction
Soil texture is one of the most influential characteristics that affects the decomposition and retention of soil organic matter, as it directly or indirectly impacts the soil's physical, chemical, and biological properties. Soil clays play an important role in soil organic matter stability. ...
Read More
Introduction
Soil texture is one of the most influential characteristics that affects the decomposition and retention of soil organic matter, as it directly or indirectly impacts the soil's physical, chemical, and biological properties. Soil clays play an important role in soil organic matter stability. Organic matter adsorbed on phyllosilicate clays is more resistant to microbial decomposition than organic matter that has not interacted with any mineral. Exchangeable cations through the influence of physical and chemical characteristics of the soil probably cause changes in the absorption and retention of organic matter. In previous studies, the effect of soil texture on organic matter retention has been investigated, but the impact of clay type and exchange cation has not been investigated. This study aimed to examine the effect of different contents of vermiculite and zeolite clays and exchange cations on the mineralization of organic nitrogen.
Materials and Methods
A factorial experiment was conducted in a completely randomized design with three replications to study the effect of the type and content of clay and the type of exchange cations on organic nitrogen dynamics. Experimental treatments include two types of clay (vermiculite and zeolite), four different levels of clay (0, 15, 30, and 45%), and three types of exchangeable cations (Na+, Ca2+, and Al3+). The experiment included 24 treatments and three replications. There were total of 72 experimental units. Artificial soil of 50 grams was prepared separately according to the amount and type of clay and the type of exchange cation. "Next, alfalfa plant residues were added to all samples at a rate of 5% w/w. After inoculating and air-drying the samples, the moisture content was adjusted to 60% of the field capacity (FC) using distilled water. To prevent excess water from affecting the final moisture readings, the samples were first air-dried, and then sufficient distilled water was added to each sample to achieve 60% of FC. The samples were then kept in the dark for 60 days at a temperature of 23 °C. Distilled water was added and sealed to the bottom of the incubation jars to keep the moisture content of the soil samples constant during incubation. The percentage of mineralized nitrogen, microbial biomass nitrogen, and the activity of acid and alkaline phosphatase and cellulase enzymes were determined in the prepared samples. The data were analyzed using ANOVA, and the means were compared using Duncan's Multiple Range Test (DMRT). Before applying ANOVA, the data's normality and variance homogeneity were checked using Kolmogorov- Smirnov and Levene tests, respectively. The SPSS software (Windows version 25.0, SPSS Inc., Chicago, USA) and SAS software (version 9.4, SAS Institute Inc., Cary, NC) were employed for data analysis.
Results and Discussion
The results of variance analysis of the data showed that the effect of the type and content of clay and the type of exchangeable cation on the percentage of mineralized nitrogen, microbial biomass nitrogen, and the activity of acid and alkaline phosphatase and cellulase enzymes were significant (p< 0.01). The results revealed that, regardless of the duration of the samples, with the increase in the amount of clay, the percentage of inorganic nitrogen and the activity of enzymes decreased, but the nitrogen of microbial biomass increased. The highest percentage of inorganic nitrogen was obtained 60 days after incubation of the samples and in clays saturated with calcium, and the lowest amount of these attributes was obtained 15 days after incubation of the samples and in clays saturated with aluminum. The results showed that nitrogen mineralization increased with the samples' incubation time. Also, the highest percentage of mineralized nitrogen, microbial biomass nitrogen, and enzyme activity were observed in soils with vermiculite.
Conclusion
The increase in the incubation duration enhanced the percentage of inorganic nitrogen. The percentage of mineralized nitrogen and microbial biomass nitrogen was higher in soils with vermiculite than in soils with zeolite. Moreover, regardless of the incubation duration of samples, with increasing clay content, the percentage of mineralized nitrogen and enzyme activity decreased, but with increasing clay nitrogen content, microbial biomass increased. The highest and lowest amounts of mineralized nitrogen and nitrogen of microbial biomass were measured in soils with calcium and aluminum, respectively. The results showed the effect of the clay type and content and the exchangeable cation type on organic nitrogen dynamics.
Soil science
Z. Sohrabzadeh; Y. Kooch
Abstract
Introduction Shrub covers play a pivotal role in pasture ecosystems, exerting considerable influence on various biochemical processes that occur within the habitat and surface layers of the soil. Despite their significance, there is a scarcity of research exploring the impact of different ...
Read More
Introduction Shrub covers play a pivotal role in pasture ecosystems, exerting considerable influence on various biochemical processes that occur within the habitat and surface layers of the soil. Despite their significance, there is a scarcity of research exploring the impact of different types of shrubs covers on soil properties within pasture ecosystems. Consequently, this present study was undertaken to address this gap in knowledge and investigate the effects of shrub cover on soil characteristics specifically within a semi-arid climate, which is known for its delicate and vulnerable habitats. Materials and MethodsThe implementation of this research involved the consideration of the mountainous region of Kiakola, Nowshahr city. The current investigation focused on assessing the impact of various shrubs, namely Carpinus orientalis Miller, Crataegus microphylla C. Koch, Berberis integerrima Bunge, Prunus spinosa L., and Rhamnus pallasii Fisch. and C. A. Mey, on specific soil properies within the mountainous area of Kiakla, Nowshahr city. To carry out this research, 15 sites were selected for each of the aforementioned shrub species. Soil samples were collected from under the canopy of these species, specifically at a depth of 0-10 cm and a surface area of 30 cm × 30 cm. A total of 75 soil samples were then taken to the laboratory for analysis. The samples were divided into two parts: one part underwent physical and chemical tests after air-drying and passing through a 2 mm sieve, while the other part was stored at 4 degrees Celsius for biological tests. The presence or absence of significant differences in soil properties related to the type of shrub cover under investigation was determined using a one-way analysis of variance test. Principal component analysis (PCA) was utilized to establish the relationship between different soil characteristics within the studied shrub covers. Results and DiscussionAccording to the findings of this investigation, alterations in the shrub species present in the examined pasture habitat resulted in modifications to the majority of soil quality properties. Nevertheless, no statistically significant disparity was observed in the quantity of soil organic matter. However, it is worth noting that the quantity of organic matter in the subsoil of Carpinus species exceeded that of the other examined shrubs. Carpinus and Crataegus shrubs were associated with the lowest values of bulk density, while the shrubs under investigation had no significant impact on soil particle density. Furthermore, the subsoil of the Carpinus shrub cover exhibited the highest values of soil porosity. In the studied area, the most stable soil aggregates were observed beneath the Carpinus and Rhamnus shrubs. The subsoil of Rhamnus and Carpinus shrubs exhibited the highest and lowest quantities of sand, respectively. Similarly, the subsoil of Carpinus and Rhamnus displayed the highest and lowest quantities of clay, respectively. The soil under Rhamnus displayed the highest ratio of CR and MCR indices, whereas the subsoil of Carpinus exhibited the lowest values of these indices. Fulvic and humic acids demonstrated the greatest values beneath the Carpinus, Crataegus, Berberis, Prunus, and Rhamnus shrubs, respectively, following a comparable pattern. Additionally, the subsoil of Carpinus exhibited the greatest quantity of microbial ratio, while the soil under Rhamnus displayed the lowest quantity of this characteristic. The outcomes of the principal component analysis (PCA) revealed that the quantity of organic matter, clay content, fulvic and humic acids, porosity, and stability of soil aggregate in the soil beneath Carpinus played a significant role in enhancing the soil microbial ratio of this shrub in comparison to the other shrubs. Conclusion The findings of this investigation validate the capability of Carpinus foliage to ensure the conservation of soil quality indicators on the hilly grasslands of northern Iran. Therefore, it is proposed that restoration efforts be conducted in the designated region and other areas with similar ecological conditions. Additionally, it is recommended that special attention be given to the implementation of Carpinus and other indigenous shrub species to protect soil integrity.
Soil science
Sahar Mehrnoosh; Ali Beheshti Ale Agha; Fatemeh Rakhsh; Morteza Pourreza; Ali Akbar Safari Sinegani
Abstract
IntroductionThe maintenance of planted forests in arid and semi-arid lands is important. Soil formation in forest ecosystems is different with different tree species. Tree species have a direct and indirect effect on soil organisms. Forest ecosystems change their species composition and abundance of ...
Read More
IntroductionThe maintenance of planted forests in arid and semi-arid lands is important. Soil formation in forest ecosystems is different with different tree species. Tree species have a direct and indirect effect on soil organisms. Forest ecosystems change their species composition and abundance of microorganisms, and consequently their biogeochemical cycles. The accumulation of vegetation biomass and the improvement of soil fertility can play a significant role in soil restoration.Materials and MethodsIn order to investigate the biological characteristics of the soil from 5 treatments, including agricultural (dry farming and relatively poor lands that are usually cultivated barley and wheat and have low productivity), pasture (pastures with minimal vegetation and high slopes that are affected by overgrazing have been changed to barren lands), forest with Acacia type (under and outside the crown), forest with the Cupressus arizonica type (under and outside the crown) and forest with the Pinus brutia type (under and outside the crown) randomly. Sampling was done in 3 repetitions from the 0 to 5 cm layer. The statistical sampling design of this research was completely random, in which, according to the type of afforested species, two types of coniferous forest stands (including Cupressus arizonica and Pinus brutia) and one broadleaf stand (Acacia species) were selected. Also, the area under the crown trees and outside the crown trees was also investigated. Soil samples were sampled with sterile equipment and crushed through a 4-mm sieve. Fresh and moist soil was kept at 4 °C temperature for soil biological tests. Microbial biomass carbon, soil basal respiration (197 days), substrate-induced respiration, and metabolic quotient were measured. Streptomycin sulfate was used to measure fungal respiration and cycloheximide was used to measure bacterial respiration. The activities of urease, acid, and alkaline phosphatase enzymes were determined. After measuring the biological properties of the soil, the normality of the data was checked by the Anderson–Darling test, and the homogeneity of the variance of the treatments was checked by using Levene's test. Analysis of data variance was done using One-Way ANOVA and average data comparison was done using Duncan's test at 5 and 1% probability levels (SAS 9.4 and SPSS 26).Results and DiscussionThe results of soil biological characteristics analysis showed that the highest values of soil respiration and amount of consumed organic matter, substrate-induced respiration, microbial biomass carbon, enzyme activities, and fungal respiration were measured in conifers. Although the amount of these features was also significant in broadleaf trees, they had significant differences. In this study, the high soil respiration rate in coniferous covers compared to broadleaf can be due to the high organic carbon content of the soil in this cover. According to the results of substrate-induced respiration in different coatings, likely the activity of microorganisms involved in the decomposition of organic matter in the studied habitats had a significant difference; Therefore, different coatings can affect the population of soil microorganisms as the main source of decomposition and emission of carbon dioxide by changing the quantity and quality of organic matter and other factors. Also, the highest values of metabolic quotient and bacterial respiration were observed in agricultural and pasture covers. A higher metabolic quotient in these covers indicates a decrease in the efficiency of the use of leaf litter by the soil microbial community. In general, the metabolic quotient in the bacterial community is higher than the fungal community; Therefore, it seems that the predominance of the bacterial population in agricultural and pasture cover has caused this index to increase, although plowing and cultivation, and disturbance of these covers have caused stress to this bacterial community and as a result increased the metabolic quotient deficit in these covers.ConclusionThe results of this research showed that the type of planted tree species causes significant changes in the biological characteristics of the soil. The current research shows that the forest, whether coniferous or broadleaf, had the highest values of enzyme activities, basal respiration, substrate-induced respiration, microbial biomass carbon, and the lowest values of metabolic quotient compared to agricultural and pasture covers. Afforestation increases biological activity and possibly the number and diversity of microorganisms, and improves soil characteristics in the long term. In agriculture and pasture land, due to the destruction of soil and aggregates by agricultural activities such as plowing or excessive livestock grazing, the amount of organic carbon and the activity of microorganisms decreases, and with the decrease of other soil characteristics, the quality of the soil decreases over time. From this research, it can be concluded that the planting of forest species in the soils of degraded areas in the long term can increase soil organic carbon due to high-quality leaf litter, and as a result, increase permeability and soil moisture. Increasing soil organic carbon increases the activity of microorganisms, and in the long term, it will improve various soil characteristics. Planting forest plants in the natural areas of the country, which were destroyed due to the change of use to agriculture and indiscriminate cultivation and finally abandoned, can improve the characteristics of the soil and, as a result, establish the native vegetation of the region, and increase the permeability of water in the soil, the risk of soil erosion, floods, etc. reduce.
Soil science
S. Rezaei; H. Bayat
Abstract
Introduction
Given the energy crisis in the world, increasing environmental pollution, clean, renewable energy and the reduction of environmental pollution are needed. Soil is the main source of agricultural production. Therefore, maintaining soil health and fertility is very important for sustainable ...
Read More
Introduction
Given the energy crisis in the world, increasing environmental pollution, clean, renewable energy and the reduction of environmental pollution are needed. Soil is the main source of agricultural production. Therefore, maintaining soil health and fertility is very important for sustainable food production. Nanotechnology is a good way to reduce soil issues in agriculture, a promising method to improve soil properties and significant capacity to increase yield. Nanotechnology is one of the newest technologies that is used in all fields of science and research due to its high potential and unique features, including natural resources and soil protection. Nanoparticles have the ability to change some physical, mechanical and chemical properties of soil due to their very high specific surface area and activity. Nanoparticles increase the cation exchange capacity of soil and soil porosity. Among all nanoparticles, zinc oxide (ZnO) is one of the most widely used nanoparticles. Zinc oxide nanoparticles due to their high specific surface area can act as a bonding agent between particles and stabilize the soil structure by flocculating soil particles. Although many studies have used zinc oxide nanoparticles (ZnO) in the field of heavy metal contamination in soil, aqueous solutions and plants, the effect of one nanoparticle on soils with different textures has been less reported. Therefore, objective of this study was to investigate the effect of zinc oxide nanoparticles on some physical and chemical properties of soils with different textures.
Materials and Methods
In this study, three soil samples with different textures, including sandy loam, loam and clay were collected from three locations as Malayer, Abbasabad and Nahavand, in Hamedan province, respectively. Samples were taken from soil surface (0-20 cm depth). The soil samples were transferred to the Soil Physics Laboratory. After air drying, they were passed through a 4 mm sieve and mixed with specific weight percentages of zinc oxide (ZnO) nanoparticles (zero, 0.5, 1 and 3 % W/W) in three replications. After preparing the treated samples, the soils were homogeneously poured into plastic containers measuring 18 × 5.5 × 18 cm with a specific bulk density related to the field. The treated soils in plastic containers, were wetted and dried with municipal water for 120 consecutive incubation period. After 120 days from the start of incubation, the samples were taken from the containers. Some physical and chemical properties including pH, cation exchange capacity, organic matter, calcium carbonate and electrical conductivity were measured.
Results and Discussion
The results showed that the use of nanoparticles increased the cation exchange capacity in two textures of loamy and clay soils. The increment was significant compared to the control in loamy soil at two levels of 1 and 3% and in clay soil in all three levels of 0.5, 1 and 3%. Electrical conductivity increased and decreased (P <0.05) at 3% level for loamy soil and at 3% for sandy loam and clay soils, respectively. In contrast, the application of nanoparticles led to a decrease in pH and organic matter content (P <0.05) in sandy loam and clay soils, respectively. At the level of zero and 0.5%, the order of pH was: sandy loam> clay> loamy soil, with significant differences. But at the level of 1%, the order of pH was: sandy loamy> loamy> clay, with significant differences. At 3% level, the order of pH was: loamy> sandy loam> clay, with significant differences. At all levels of zero, 0.5, 1 and 3% of zinc oxide nanoparticles, the amount of organic matter was significantly in loamy> clay> sandy loam. Application of different levels of zinc oxide nanoparticles in clay soil reduced the percentage of calcium carbonate (P <0.05) (at the 3% by weight level), but had no effect on the amount of this variable in sandy loam and loamy soils. At all levels of zero, 0.5, 1 and 3%, the amount of soil calcium carbonate was significantly in the following order: clay> sandy loam> loam.
Conclusion
According to the results obtained in this study, it can be concluded that the use of nanoparticles can be a good solution to reduce the harmful environmental effects of chemical fertilizers. In addition to the positive effect of zinc oxide nanoparticles on physical and chemical parameters in different textures, the selection of the most optimal level of zinc oxide nanoparticles should be economically applicable. This requires further studies to determine the significant effects of nanoparticles on the physicochemical properties of the soils in different conditions to determine the optimal amount of nanoparticles, in order to save costs.
H. Hosseini; M. Fekri; Mohammad Hady Farpoor; M. Mahmoodabadi
Abstract
Introduction: The availability of the applied phosphorus (P) is controlled by sorption-desorption reactions in soil. Since the sorption-desorption reactions are affected by physical and chemical properties of the soil, the presence of organic matter (OM) and carbonates can also effect on the ...
Read More
Introduction: The availability of the applied phosphorus (P) is controlled by sorption-desorption reactions in soil. Since the sorption-desorption reactions are affected by physical and chemical properties of the soil, the presence of organic matter (OM) and carbonates can also effect on the P sorption capacity in soil. The purpose of this study was to investigate the effects of OM and carbonates on phosphorus sorption isotherms in some calcareous soils of Kerman province.
Materials and Methods: Six surface soil composite samples (0-30) were collected from Kerman Province located in southeast of Iran. The soils with a wide range of OM and calcium carbonate were selected for sampling. Samples were air dried and passed through a sieve of 2 mm. Physicochemical properties of the soil samples were determined according to the Soil Survey Laboratory Manual. Thereafter, the soil samples were divided into three parts. One portion was used for treatment with sodium hypochlorite to remove organic matter. The second part was treated with sodium acetate buffer (pH = 5) to remove carbonates. The third was used as a control without any treatment. Batch experiments were carried out to determinthe P-sorption isotherms in soil. The sorption behavior of P was studied by Langmuir and Freundlich isotherm models. All experiments were conducted in three replications.
Results and Discussion: The results showed that organic matter and equivalent calcium carbonate, removed from the studied soils with an average efficiency of 86.7% and 84.9%, respectively. Although the isotherms data showed that both Langmuir and Freundlich equations fits to data,Langmuir equation with higher mean of correlation coefficient (R2=0.982) and lower standard error (0.022) showed the best fit to P-sorption data for all soil samples (with and without treatment). Removal of organic matter by sodium hypochlorite increased the phosphorus adsorption capacity in the studied soils. After removal of soil organic matter, an increase in phosphorus adsorption capacity in the studied soils. With respect to control, removing the organic matter increased the adsorption capacity parameters (qmax and kf) about 37 to 104 mg.kg-1 and 11 to 23 L.kg-1, respectively. These results indicate that Fe- and Al-oxides and other available adsorption sites on the mineral surfaces are coated by organic matter and are activated after removal of OM. Removal of carbonates from the soil significantly reduced the P-sorption capacity. qmax and kf were decreased by 17% and 32%, respectively, compared to untreated soils. It is, therefore suggested that available P adsorbing surfaces decreases by removing carbonates from the soil.Constants related with bonding energy increased by 17.03% and decreased by 28.78% by removal of OM and calcium carbonate, respectively. The P maximum buffering capacity is an important indicator for assessing phosphorus stabilization capacity in soil. The greater P buffering capacity, the fewer ability of phosphorus replacement to soil solution. After removal of carbonates, this parameter decreased by an average of 42.5%. The results suggested that carbonates is an important factor in availability of phosphorus in soil. The required phosphorus standard increased by 14.43% by removing OM in the studied soils. However, the removal of carbonates reduced the need of soil for phosphorus by 40.5%.
Conclusion: In this study was investigated the effect of removing organic matter and carbonates on phosphorus sorption isotherms in some calcareous soils of Kerman province. The results of this study showed that P sorption capacity is affected by the amount of carbonates and organic matter. Removal of organic matter from the soil increased the sorption capacity of phosphorus due to Fe- and Al-oxides. Other available adsorption sites on the mineral surface which are coated by the organic matter are active. Carbonates is known as an active site for maintaining phosphorus in the soil and its removal from soils reduces the phosphorus adsorption capacity. Applying/Preserving organic matters to/in soil can increases the efficiency of phosphate fertilizer application and improves plant nutrition. The removal of carbonates from the studied soils reduced their need for phosphorus. Therefore, as well as the addition of organic matter to soil, the removal or reduction of carbonates from agricultural soils is important for improving phosphorus utilization efficiency and plant nutrition management.
MirHassan Rasouli-Sadaghiani; Roghayeh Vahedi; Mohsen Barin
Abstract
Introduction: Millions of tons of trees pruning waste are produced annually in Iran, which can contribute to supplying soil organic matter. Soils in arid and semi-arid regions, due to lack of sufficient vegetation and the return of low amounts of plant residues to the soil, contain little organic matter. ...
Read More
Introduction: Millions of tons of trees pruning waste are produced annually in Iran, which can contribute to supplying soil organic matter. Soils in arid and semi-arid regions, due to lack of sufficient vegetation and the return of low amounts of plant residues to the soil, contain little organic matter. These soils are often calcareous, and as a result, many plants in these soils are faced with nutritional problems, especially phosphorus deficiency. Phosphorus, as an essential element for plant growth, combines with soil components and changes into less soluble and insoluble compounds in calcareous soils with low amounts of organic matter. Organic matter and biological amendments can affect the solubility and mobility of nutrients in the rhizosphere and improve their bioavailability by creating different chemical and biological conditions. The pruning waste of trees can be used to produce biochar and compost and consequently improves soil physical and chemical properties and plays an important role in the dynamics and living of soil microorganisms. Biochar is a carbon-rich solid material produced during pyrolysis which is the thermal degradation of biomass under oxygen limited conditions. It has recently received much attention as a soil amendment which can be used to increase nutrient availability, improve the soil microbial diversity and biological activities such as enzyme activity in rhizosphere and sequester carbon in agricultural soils. In addition, compost is a chemical derived product from organic waste and contains many beneficial elements that are gradually released into soil and available to plants. Another approach to improve the bioavailability and mobility of phosphorus in the rhizosphere is the use of potential of phosphate-solubilizing microorganisms including arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR). Limiting the roots to examine the biological and chemical changes and the extent to which these properties have expanded in the rhizosphere are challenges that have been less addressed .Rhizobox is one of the systems used to study rhizosphere changes. The aim of this study was to investigate the effect of biochar and compost prepared from pruning waste of apples and grapes trees as well as microbial inoculation on phosphatase activity and phosphorus availability at wheat rhizosphere under rhizobox condition.
Materials and Methods: This study was carried out on a completely randomized design with a factorial arrangement in three replications, under greenhouse condition in rhizobox. The factors were organic matter (pruning waste biochar (PWB), pruning waste compost (PWC) and control (without organic matter)), microbial inoculation (AMF and PGPR) and soil type (rhizosphere and non-rhizosphere soil). For this purpose, a soil sample with light texture and low available phosphorus content was prepared. PWB used in the experiment was produced from mix pruning waste of apple and grape at the final temperature of approximately 350°C for 3 hours. Moreover, pruning waste compost of apple and grape trees was prepared from Department of Soil Science, Urmia University. The biochar and compost were ground and screened through a 0.5 mm sieve for the greenhouse experiment. The seeds of wheat were planted in 20 × 15 × 20 cm rhizobox (length, width and height). At greenhouse experiment, the biochar and compost were added to the boxes in terms of 1.5% pure organic carbon before planting (each box contained 5.8 kg of soil). In control treatments (without organic matter), sterile soil was used with microbial inoculation. Microbial strains used for inoculation included Pseudomonas aeruginosa, Pseudomonas fluorescens and Pseudomonas putida) and mycorrhizal fungus (Glomus fasciculatum). Wheat seeds (Triticum aestivum L. cv. Pishtaz) were grown in rhizobox. At the end of the vegetative growth period, acid phosphatase (ACP) and alkaline phosphatase (ALP) enzymes activities were asseyedassayed by spectrophotometry method. Soil available P was extracted with 0.5 M NaHCO3 (Olsen-P) in the rhizosphere and non-rhizosphere soils and phosphorus concentrations in the root and shoot were determined by the standard method.
Results and Discussion: The results showed that the application of PWC and microbial inoculation significantly increased ACP and ALP enzymes activity and the availability of phosphorus compared to the control. The highest increase in ALP enzyme activity and available phosphorus was observed in PWC treatment inoculated with PGPR. Furthermore, PWC increased the ACP and ALP enzymes activities in the rhizosphere soil by 1.39 and 1.33 times compared to non-rhizosphere soil, respectively. However, phosphorus availability in the non-rhizosphere soil of the PWC treatment was 21.19% higher than that in the rhizosphere soil. The lowest available phosphorus content was observed in rhizosphere soil of AMF treatment. In addition, the highest phosphorus concentrations in plant root and shoot were, respectively, found in the compost and biochar treatments inoculated with AMF. In PWB treatment, the inoculation of AMF increased shoot phosphorus concentration by 1.31 times relative to PGPR inoculation.
Conclusions: In general, applying organic matter and microbial inoculation had a significant positive effect on phosphorus availability and plant growth. Adding organic matter to the soil, such as compost and inoculation with microorganisms particularly PGPR bacteria in the root zone, led to increased soil available phosphorus. The activity of phosphatases in soil was influenced by using organic materials such as compost and microbial inoculation which enhance the bioavailability of inorganic phosphorus. More positive interaction of PWC and PWB with AMF than PGPR in the rhizosphere caused greater increase of phosphorus bioavailability in the root zone and plant phosphorus uptake. In general, according to the results of this study, it seems that the use of organic materials and biological potential of the microorganisms have a significant effect on phosphorus availability and improve plant growth.
Seyyedeh Zohreh Taghdisi heydarian; Reza Khorassani; Hojat Emami
Abstract
Introduction: The amount of soil nutrients and their availability for plants are the important aspects of soil fertility. Although micronutrients are used by plants in very small amounts, they play an active role in many plant-based processes and reactions influencing the plant growth and yield. The ...
Read More
Introduction: The amount of soil nutrients and their availability for plants are the important aspects of soil fertility. Although micronutrients are used by plants in very small amounts, they play an active role in many plant-based processes and reactions influencing the plant growth and yield. The efficiency of absorption of micronutrient can be increased by adding some organic and mineral materials to soil. Saha et al. (41) observed an increase in micronutrient concentration of corn grain by adding organic materials to soil. Zeolite is one of the most commonly minerals used to increase agricultural production (17). The zeolites, due to their structure and porosity, are well-suited for retaining the nutrients and gradually releasing them into the root zone (40).Despite the positive effects of zeolite on some physical and chemical properties of soil, its application at high levels may adversely affect the absorption of nutrients and plant growth. Hamidpour et al. (18) who used zeolite for Zinnia flower, reported that zeolite reduced the yield of Zinnia flower. Basari et al. (4) reported that zeolite application increased soil pH and electrical conductivity (EC). Therefore, this research was carried out with the aim of assessing the influence of zeolite application, type (i.e. vermicompost and cow manure) and organic matter levels on the growth and the micronutrients uptake and determining the appropriate composition for corn.
Materials and Methods: A factorial experiment was conducted in a completely randomized design with three replications in greenhouse under controlled condition.The treatments consisted of raw zeolite (natural) in three levels (0, 6, 12% by weight), organic matter including vermicompost in three levels (0, 0.125, 0.25% or 0, 5, 10 t ha-1) and cow manure at three levels (0, 0.5, 1% by weight or 0, 20, 40 t ha-1).The soil was collected at a depth of 0-30 cm from the Mashhad Soil and Water Research Center. General soil characteristics and micronutrients concentration (iron, zinc and manganese) were determined according to standard methods (14, 27). For vermicompost and cow manure, some parameters such as pH and EC, organic carbon (46), available phosphorus and potassium (21), total nitrogen (7) and micronutrient (iron, zinc and manganese) were also measured (21). Further, pH, EC and micronutrient (iron, zinc, and manganese) were measured for natural zeolite (27). The pots were prepared by mixing 5 kg soil and experimental materials. N, P, and K were added according to soil testing. Irrigation with distilled water at field capacity level was done during the growth period. The plants were harvested75 days after sowing and after separating shoot and root, the plant materials were transferred to laboratory. Root and shoot dry weight were determined and after dry digesting of plant materials, the concentration of micronutrient were quantified by Atomic Absorption (21). The soil samples were also analyzed in order to determine the chemical properties of the soil after harvesting. Statistical analysis of the data was performed using JMP software and the mean comparison was carried out based on LSD test at 5% probability level.
Results and Discussion: The results of the experiment showed that increasing zeolite levels reduced dry weight, decreased height and uptake of zinc, iron and manganese and increased soil pH and iron and manganese concentrations. In addition, it was observed that the zeolite application had a negative effect on the plant growth and micronutrients uptake. Burriesci et al. (8) concluded that the zeolite application without fertilizing seems not to considerably increase plant growth. According to Kimberly and Nelson (24), the use of natural zeolite, without adding nutrients, leads to a competition between plant roots and zeolite for the nutrients absorption. Sarmetzidis et al. (42) showed that zeolite had no effect on the growth and yield of roses. Kolar et al. (25) reported that increasing the amount of zeolite in the geranium cultivar increased pH and the plants growth. At lower levels of zeolite, shoot fresh and dry weight was larger than that in higher levels of zeolite. Our results also denoted that the maximum amount of plant dry weight, plant height, the micronutrient (zinc, iron and manganese) uptake and the lowest soil pH were observed for the treatment of cow manure (1 %) in the absence of zeolite which had a significant difference relative to other treatments and also control. Shirani et al. (44) reported that the application of cow manure significantly increased corn dry matter. Ortiz and Alkaniz (36) showed that using organic fertilizers enhances the amount of absorbent metals such as iron, zinc and manganese as these metals are in a soluble and exchangeable form in these fertilizers. By releasing organic acids, the organic fertilizers, especially cow manure, reduce the localized pH of soil and increase the iron uptake by plants during the mineralization process.
Conclusion: According to the results, the use of zeolite increased soil pH, decreased corn growth and micronutrient uptake. Applying organic materials with zeolite can reduce the mentioned negative effect of zeolite. Cow manure at lowest level was more efficient than vermicompost at all levels. Overall, adding cow manure can improve the plant growth and micronutrient uptake by plant when the zeolite is intended to be used to modify soil physical characteristic.
Iman Nikravesh; Saeid Boroomand Nasab; AbdAli Naseri; Amir Soltani Mohamadi
Abstract
Introduction: Organic matter is considered as the main element for soil fertility by improving the condition of agglomeration, porosity and soil permeability. One of the most useful ways to use plant debris is to turn it into Biochar and Hydrochar. Biochar is a kind of coal produced from plant biomass ...
Read More
Introduction: Organic matter is considered as the main element for soil fertility by improving the condition of agglomeration, porosity and soil permeability. One of the most useful ways to use plant debris is to turn it into Biochar and Hydrochar. Biochar is a kind of coal produced from plant biomass and agricultural waste that is burned in the presence of low oxygen content or its absence. The hydrothermal process involves heating the biomass or other materials in a pressurized in the presence of water at a temperature between 180 and 250 C, and the result of this reaction is coal (Hydrochar) and soluble organic matter. Biochar and Hydrochar have several advantages such as climate change mitigation through carbon sequestration, soil cation exchange capacity (CEC) increasing, soil fertility, plant growth and root development, improved soil structure and stability, increased soil moisture storage capacity and soil pH adjustment. Coarse soils have large pores and they have low ability to absorb the water and nutrient. The aim of this research was to determine the optimum temperature of wheat straw Biochar and Hydrochar production, and to investigate the effect of these materials on bulk density, total porosity and moisture curve of Sandy Loam soil.
Materials and Methods: In order to produce biochar, at first the wheat straw was washed and dried in the oven. Then it was grinded and was made at different temperatures (200 to 600 ̊ C) inside a furnace for four hours. Similar to biochar, for producing hydrochar, after washing and drying the wheat straw it was grinded into particles ranges from 0.5 to 1 mm. Then it was placed in a stainless steel autoclave with deionized water. The autoclave was heated at different temperatures between 140-230 ̊ C for four hours. The optimum temperature for producing of biochar and hydro-char was determined by using stable organic matter yield index (SOMYI), and it was used in this study. The pH and EC of the biochar and hydro-char samples were measured by combining 1 g of a sample with 20 mL DI water. The cationic and anionic exchange capacity were determined by replacing sodium nitrate with hydrochloric and potassium chloride (Chintala et al., 2013). Surface area was obtained using methylene blue method. A CHNSO Elemental Analyzer (Vario ELIII- elementar- made in Germany) was used to determine the content of C, N, H, S and O in the samples. Potassium and sodium content were measured by flame photometer and calcium and magnesium were measured by titration with EDTA. Biohchar and hydrochar treatments were applied at three levels of 2, 5 and 10 mg / kg soil in three replications in 21 lysimeter. The bulk density, total porosity and moisture curve of soil were measured after four-month irrigation period.
Results and Discussion: According to the calculated value of stable organic matter yield index (SOMYI) at various temperatures in this study, the maximum thermal constancy of wheat straw biochar was 16.20 at temperature of 300 ̊ C and for hydro-char was obtained as 6.13 at the temperature of 200 ̊ C. So, the temperatures of 300 and 200 ̊C were determined as the optimum temperature of sustainable carbon biochar and hydro-char production and were used to continue the experiments of this study. The results showed that addition of HW2, HW5, HW10, BW2, BW5 and BW10 to soil compared to control treatment significantly decreased the bulk density of the soil, 8.97, 11.77, 15.17, 7.9, 10 and 13.10 percent respectively. Also, results showed that addition of HW2, HW5, HW10, BW2, BW5 and BW10 to the soil as compared to control treatment increased soil porosity by 8.8, 11.48, 15.77, 6.48, 9 and 22.13 percent, respectively. The reason for reducing the soil bulk density and increasing the total porosity of soil can be due to the mixing of the soil with materials with a lower bulk density and the effect of increasing the organic matter of the soil due to the use of Biochar and Hydrochar. Based on statistical analysis, wheat straw Biochar and Hydrochar had a significant effect (P
faeze lotfi; amir fotovat; reza khorasani; Mahdi Bahraini
Abstract
Introduction: The pollution of soils by heavy metals due to human activities poses a serious concern for human and environmental health. In order to evaluate the risks of heavy metal contamination such as cadmium in soil, it is necessary to understand its bioavailability which depends on its chemical ...
Read More
Introduction: The pollution of soils by heavy metals due to human activities poses a serious concern for human and environmental health. In order to evaluate the risks of heavy metal contamination such as cadmium in soil, it is necessary to understand its bioavailability which depends on its chemical forms in the soil. According to Tessier (1979), heavy metals can be found in various chemical forms in soil including exchangeable, bound to carbonates, bound to iron and manganese oxides and bound to organic matter and residual. These fractions significantly influence the cadmium mobility and bioavailability. Distribution of metals in chemical forms in soil depends on soil pH, amount of organic matter, oxidation-reduction potential and ionic strength. Root exudation, soil texture, cation exchangeable capacity and amount of calcium carbonate may also impact chemical forms of cadmium. Many studies have showed that plant root may affect the chemistry of heavy metals in soil root zone. The objective of this study was to evaluate the effect of organic matter on the distribution of cadmium in corn root media.
Materials and Methods: To investigate the effect of organic matter (cow manure) and root activity on chemical forms of cadmium, a greenhouse experiment was conducted using rhizobox. The contaminated soil sample used in the study was collected from Zanjan. This greenhouse experiment was conducted in a factorial design, with 2 replications, two levels of organic matter (0 and 1.5%) and three zones classified based on their distance from root. The soil samples were air dried and crushed to pass through a 2-mm sieve. The cultivation was conducted using a rhizobox. The rhizobox consisted of three parts: 1.central compartment (rhizosphere), 2.close to rhizosphere, and 3. soil bulk. Soil samples were mixed with fertilizer and packed in rhizobox. Eight pre-germinated maize seedlings were transferred to the central compartment and five days after germination, thinned to four plants. Ten weeks after planting, corn plants were harvested for analysis. The compartments of rhizobox were separated. The collected plant samples (root and shoot) were rinsed with deionized water and oven-dried at 70 °C. Soil samples were also measured for pH, CEC and total organic carbon. The chemical forms of cadmium in the soil and plant samples were identified by the sequential extraction procedure proposed by Tessier (1979). Bioavailable cadmium in soil was also extracted by DTPA-TEA.
Results and Discussion: Results showed that the highest amount of soil cadmium was found in carbonate fraction. Adding organic matter increased the soil pH, CEC and organic carbon amount, whereas none of chemical forms of cadmium were significantly affected by adding organic matter. Bioavailability of cadmium, however, decreased by adding organic matter to soil, It can be therefore concluded that increment in cadmium uptake due to increased organic matter led to decreased cadmium bioavailability. The exchangeable cadmium was negatively correlated to soil organic carbon, while bioavailable cadmium was negatively correlated to soil pH, CEC and amount of soil organic carbon. Moreover, our results indicated that the fractions of cadmium were not significantly affected by distance from the root. Moreover, adding organic matter insignificantly increased concentration of cadmium in shoots, roots and total plants.
Conclusion: In this study, among different chemical forms of cadmium, only bioavailable cadmium was significantly affected by adding organic matter to soil. Additionally, soil pH, CEC and organic carbon were significantly increased by adding organic matter. These results indicate that addition of organic matter to soil may indirectly influence chemical forms of cadmium through impacting soil properties (soil pH, CEC and organic carbon). The addition of organic matter had the most influence on carbonate fraction of cadmium which may be potentially available to plant. It seems that addition of organic matter (cow manure) may result in increase of cadmium concentration in plant. Therefore, it can be concluded that addition of cow manure to calcareous soils with neutral to slightly alkaline pH may lead to increased cadmium uptake by the plant (corn) and reduced soil cadmium concentration.
tahereh mansouri; Ahmad Golchin; Zahra Rezaei
Abstract
Introduction: Selecting the right source of nutrient in a particular cropping situation requires a consideration of economic, environmental, and social objectives. One of the objectives is to keep all nutrient losses to a minimum. Since the use of nitrogen chemical fertilizers began more than 100 years ...
Read More
Introduction: Selecting the right source of nutrient in a particular cropping situation requires a consideration of economic, environmental, and social objectives. One of the objectives is to keep all nutrient losses to a minimum. Since the use of nitrogen chemical fertilizers began more than 100 years ago, it has been recognized that it can be lost as gaseous ammonia when an ammonical fertilizer is applied to calcareous soil. A process by which nitrogen exit from the soil in form of ammonia and enter to the atmosphere is called volatilization. Agricultural practices (use of chemical and animal fertilizers) are known as major sources of ammonia volatilization into the atmosphere. Nitrogen losses not only economically but also in terms of environment pollution is important. Ammonia volatilization is one way of the nitrogen losses from agricultural and non-agricultural ecosystems. A variety of soil chemical properties interact with environmental conditions at the site of the fertilizer application to determine the extent of NH3 loss. This article study some of the major factors that contribute to NH3 loss from N fertilizer. The aims of this study were to evaluate the impacts of concentrations of soil calcium carbonate (experiment 1), plant residue application (experiment 2), nitrogen fertilizer rate and source on volatilization of ammonia from soil.
Materials and Methods: Two factorial experiment with 36 treatments, three replications and 108 experimental unit for 25 days at a constant temperature of 30 ° C were conducted using a completely randomized design. The experimental treatments were three concentrations of soil calcium carbonate (20, 27 and 35% in experiment 1), three alfalfa plant residue application rates (0, 2.5 and 5% w/w in experiment 2), three rates of nitrogen (0, 200 and 400 kg/ha), four sources of nitrogen (urea, ammonium nitrate, ammonium sulfate and urea- sulfuric acid). Fertilizers were added to soil samples in form of solution and the moisture of soils was brought to field capacity. Samples were placed into special jars and amount of nitrogen volatilization were measured.
Results and Discussion: The results showed that ammonia volatilization from soil increased as the concentration of soil calcium carbonate, rates of nitrogen and alfalfa plant residues application increased. In first experiment the highest amount of nitrogen volatilization rate, as ammonia (33.21 µgr N/gr soil) was measured from 400kgN/ha soil for urea fertilizer and 35 percent calcium carbonate. Also the lowest amount (11.99 µgrN/gr soil) was obtained from 20 percent calcium carbonate without application of any nitrogen fertilizer. In this experiment, with an increase in the amount of soil calcium carbonate by 15%, the amount of volatilized nitrogen in the form of ammonia were six times. By increasing the amount of soil calcium carbonate of from 20 to 27% the amount of nitrogen losses as ammonia slightly increased but with a further increase of calcium carbonate (from 27 to 35%) the amount of nitrogen losses increased a lot and this increase was higher than the initial increase. The presence of calcium carbonate in the soil increase soil pH and ammonia volatilization. In second experiment the highest amount of nitrogen volatilization rate, as ammonia (32.28 µgr N/gr soil) was measured from 400kgN/ha soil for urea- acid sulfuric fertilizer and 5 percent of plant residues. Also the lowest amount (0.33 µgrN/gr soil) was obtained from soil without application of any nitrogen fertilizer and plant residues. The most of nitrogen losses in the form of ammonia in the amount of 15.34 micrograms per gram of soil was obtained from level of 5% of alfalfa residue. With the 2.5 percent increase in the alfalfa residue rate, ammonia volatilization from soil increased in rate of 3.24 micrograms per gram of soil and by increasing it from 2.5 to 5%, nitrogen volatilization increased in the amount of 8.88 micrograms per gram of soil.
Conclusion: The loss of nitrogen as ammonia with application of nitrogen fertilizers and without application of residues was as urea> ammonium sulfate> ammonium nitrate > urea-sulfuric acid and with application of crop residues was as urea-sulfuric acid
Shirko Ebrahimi Mohammadi; Mahmood Azari; Esmaeel Manoochehri
Abstract
Introduction: Forest herbs due to decrease of runoff coefficient and the kinetic energy of raindrops, is known as a key factor in controlling runoff and soil conservation. Many physical (hydrophobicity, electrical conductivity, pH, particle size distribution, color and temperature regimes), chemical ...
Read More
Introduction: Forest herbs due to decrease of runoff coefficient and the kinetic energy of raindrops, is known as a key factor in controlling runoff and soil conservation. Many physical (hydrophobicity, electrical conductivity, pH, particle size distribution, color and temperature regimes), chemical (quality and quantity of organic matter, nutrient availability) and biological (Microbial biomass, soil invertebrates living community) soil properties can be affected by forest fires. Fire not only reduces forest herbs, vulnerability against splashing rain but also has strong effects on the hydrological cycle and soil loss. despite of repeated fires, there are very few studies about fire impact on natural resources of the west of the country, especially the city of Marivan, in Kurdistan province so this study aimed to investigate the short-term fire impacts on soil properties, Hydrologic regime, soil erosion and sedimentation of Zrebar Lake watershed in west of Iran.
Materials and Methods: Considering the importance of the slope on the hydrological response of the watershed, slope classes of the Zrebar Lake watershed were mapped. Therefore, effects of fire on hydrological characteristics, erosion and sedimentation were studied by the establishment of twelve 0.25 square meter plots in three replications at two dominant slope classes (0 to 30 and 30 to 60%) in burned and natural areas . The first plots in the burned and natural sections, was established randomly and two other plots with the similar conditions at a distance of 1.5 meters from each other were established. Garden Spray Simulator with constant pressure was used to fall rain from half a meter height for thirty minutes with an intensity of about 2 mm min-1 and 1 mm droplet diameter according to the general weather conditions of the studied area. For every five minutes, runoff and sediment were collected. Runoff volume by weighting and suspended sediment concentration by drying at 105°c were measured. Infiltration and interception by water balance assessment and subtracting the simulated rainfall volume and runoff were calculated. Soil samples were also collected in triplicate by auger drilling method to assess the effects of fire on different characteristics of topsoil (depth of 5 cm) asthe samples 1 and 2 in the slope class of 30 to 60%, and samples 3 and 4 in slope class of 0 to 30%, at the burned and natural sections respectively. In the laboratory, after determination of soil texture, the moisture content, pH and EC by portable laboratory instruments, the percentage of total organic carbon and organic matter bye wet oxidation were measured. Soil water repellency by Water Drop Penetration Times (WDPT) method in the field was calculated. Statistical analysis for comparing the average hydrophobicity of the soil, runoff and sediment of both natural and burned treatments by independent t-test and for equality of variances by the Levene test was performed using SPSS 21 software.
Results and Discussion: The results showed no effect of fire on soil texture because the fire severity was low to moderate as the color of ash was black. The fire caused to 46 percent reduction of soil moisture and also 24 percent reduction of soil organic matter and 29 percent reduction of total organic carbon at 0% to 30% and 30% to 60% slope classes respectively. Slight increase in pH and electrical conductivity were another effects of fire. At the slope of less than 30%, the average water drop penetration time were 1.24 and 0.70 S in burned and natural treatments and at the slope of 30 to 60 % slope class were 4.52 and 1.04 S respectively. Independent t-test results showed that, the water repellency differences of natural (t=3.466, p=0.003) and burned (t=7.364, p=0.000) treatments were significant. Levene test and independent t-test results showed significant difference in the average of runoff at confidence level of 95% in both slope classes. At the slope of less than 30%, differences of sediment average of burned and natural plots with a significant level of 0.012 were significant. But in slope class of 30% to 60%, despite of large different sediment concentration output from the burned and natural plots at the beginning of the experiment, there was no significant difference between them. The results showed that fire leads to low soil moisture content, total organic carbon and soil organic matter. Slight increase of pH and EC and also lack of effect on soil texture, in both slope classes were also observed. Ash on the forest floor caused to soil water repellency and therefor decreased soil infiltration and increased runoff and soil erosion.
A. Fallah Nosrat Abad; Sh. shariati
Abstract
The high cost of fertilizers in farming systems, soil pollution and degradation of soil are factors that caused to full use of available renewable nutrient sources of plant (organic and biological) with optimal application of fertilizers in order to maintain fertility, structure, biological activity, ...
Read More
The high cost of fertilizers in farming systems, soil pollution and degradation of soil are factors that caused to full use of available renewable nutrient sources of plant (organic and biological) with optimal application of fertilizers in order to maintain fertility, structure, biological activity, exchange capacity and water-holding capacity of the water in soil. Therefore, in recent years, according to investigators biofertilizers and organic farming as an alternative to chemical fertilizers has been drawn. Through this study, we examined the effects of triple superphosphate, organic matters and phosphate solubilizing microorganisms on quantitative and qualitative yield of wheat and nutrient uptake. The experiment was carried out in the factorial based on randomized complete block design. The factors were: 1-phosphate solubilizing bacteria in three levels including control, Pseudomonas Putida and Bacillus Coagulans bacteria, 2- triple superphosphate in five levels of 0, 25%, 50%, 75% and 100% and 3-organic matter in 2 levels of 0 and 15 ton/ha in the soil with high phosphorous accessibility (13 mg/kg soil) but lower than sufficient limit for plant 15 mg/kg soil). The results showed that the highest amount of yield has been recorded in Pseudomonas Putida bacteria treatment with organic matter and 25% phosphate fertilizer. As a result, at the conditions of this experiment phosphate solubilizing bacteria and organic matter significantly had higher yield than control and their combination with phosphate fertilizer had significant effect on reducing phosphate fertilizer use.
R. Jenabi Haghparast; A. Golchin; E. Kahneh
Abstract
Heavy metals are entered to the environment by mining and by applying sewage sludge and agricultural inputs to soils. These metals have detrimental effects on environment and soil organisms. An experiment was conducted to determine the cadmium affects on earthworms (Eisenia fetida) in a calcareous soil ...
Read More
Heavy metals are entered to the environment by mining and by applying sewage sludge and agricultural inputs to soils. These metals have detrimental effects on environment and soil organisms. An experiment was conducted to determine the cadmium affects on earthworms (Eisenia fetida) in a calcareous soil amended with 0 and 5% organic matter. The concentrations of Cd in soils were 0,10,20,40, 60 and 80 mg kg-1 and growth parameters of the earthworms were measured with 15 day intervals over 75 days. Survival, growth and cocoon production of earthworms were determined. The results showed that addition of organic matter to soils reduced the toxic effects of cadmium to earthworms. In soils contaminated with Cd the weights of the earthworms decreased with increasing the concentrations of this metal and cadmium had the highest negative effects on cocoon production. The highest earthworm’s mortality was recorded in soils contaminated with cadmium.