M.A. Mousavi Shalmani; A. Lakzian; A. Khorasani; V. Feiziasl; A. Mahmoudi; A. Borzuee; N. Pourmohammad
Abstract
In order to assessment of water quality and characterize seasonal variation in 18O and 2H in relation with different chemical and physiographical parameters and modelling of effective parameters, an study was conducted during 2010 to 2011 in 30 different ponds in the north of Iran. Samples were collected ...
Read More
In order to assessment of water quality and characterize seasonal variation in 18O and 2H in relation with different chemical and physiographical parameters and modelling of effective parameters, an study was conducted during 2010 to 2011 in 30 different ponds in the north of Iran. Samples were collected at three different seasons and analysed for chemical and isotopic components. Data shows that highest amounts of δ18O and δ2H were recorded in the summer (-1.15‰ and -12.11‰) and the lowest amounts were seen in the winter (-7.50‰ and -47.32‰) respectively. Data also reveals that there is significant increase in d-excess during spring and summer in ponds 20, 21, 22, 24, 25 and 26. We can conclude that residual surface runoff (from upper lands) is an important source of water to transfer soluble salts in to these ponds. In this respect, high retention time may be the main reason for movements of light isotopes in to the ponds. This has led d-excess of pond 12 even greater in summer than winter. This could be an acceptable reason for ponds 25 and 26 (Siyahkal county) with highest amount of d-excess and lowest amounts of δ18O and δ2H. It seems light water pumped from groundwater wells with minor source of salt (originated from sea deep percolation) in to the ponds, could may be another reason for significant decrease in the heavy isotopes of water (18O and 2H) for ponds 2, 12, 14 and 25 from spring to summer. Overall conclusion of multiple linear regression test indicate that firstly from 30 variables (under investigation) only a few cases can be used for identifying of changes in 18O and 2H by applications. Secondly, among the variables (studied), phytoplankton content was a common factor for interpretation of 18O and 2H during spring and summer, and also total period (during a year). Thirdly, the use of water in the spring was recommended for sampling, for 18O and 2H interpretation compared with other seasons. This is because of function can be explained more by variables and there are more variables compare with other two seasons. Fourthly, potassium concentration in spring and total volume of water in summer would be most appropriate variables for interpretation of data during these seasons