mahdi selahvarzi; B. Ghahraman; H. Ansari; K. Davari
Abstract
Introduction: Evaporation takes place from vegetation cover, from bare soil, or water bodies. In the absence of a vegetation cover, soil surface is exposed to atmosphere which increases the rate of evaporation. Evaporation of soil moisture will not only lead to water losses but also increase the risk ...
Read More
Introduction: Evaporation takes place from vegetation cover, from bare soil, or water bodies. In the absence of a vegetation cover, soil surface is exposed to atmosphere which increases the rate of evaporation. Evaporation of soil moisture will not only lead to water losses but also increase the risk of soil salinity. The risk is increased under low annual rainfall, saline irrigation water and deep water table. Soil and water salinity is common in arid and semiarid regions where using saline water is common under insufficient fresh water resources. Evaporation is one of the main components of water balance in each region and also one of the key factors for proper irrigation scheduling towards improving efficiency in the region. On the other hand evaporation has a significant role in global climate through the hydrological cycle and its proper estimation is important to predict crop yield soil salinity, water loss of irrigation canals, water structure and also on natural disasters such as drought phenomenon. There are three distinct phases for evaporation process. Step Rate – initial stage is when the soil reaches enough moisture to transfer water to evaporate at a rate proportional to the evaporative demand. During this stage, the evaporation rate by external weather conditions (solar radiation, wind, temperature, humidity, etc.) is limited and therefore can be controlled, in other words, the role of soil characteristics will occur. In this case the air phase - control (at this stage the stage profile – control). Next step is to reduce the rate of evaporation rates during this stage of succession is less than the potential rate (evaporation, atmospheric variability). At this point, evaporation rate (the rate at which the soil caused by the drying up) can deliver the level of moisture evaporation in the area is limited and controlled. So it can be a half step - called control. This may be longer than the first stage.. Apparently when the soil surface is dry to the extent that, it is effectively cut off from water, this phase starts. This stage is often called vapor diffusion process where the surface layer so as to be able to dry quickly can be important.
Materials and Methods: This study was conducted to test the texture of sandy clay and four salinity levels (0.7, 2, 4 and 8 dS m-1 (the study used a PVC pipe with a diameter of 110 mm and a height of about 1 m (for the 90 cm soil profile). Evaporation measurements and weight measurements were performed using a water balance. Also the water out of the soil columns were carefully measured. Weight was measured in soil columns has been done with a digital scale with an accuracy of 5 g. The calculation of evaporation ,obtained by subtracting the weight of the soil column twice in a row, low weight and water out of the soil column.
Results and Discussion: Evaporation decreased with increasing salinity of the soil, even in the first stage mentioned earlier by external meteorological conditions (eg, radiation, wind, temperature and humidity) controlled, observed. It should be recognized that the ability of the atmosphere to evaporate completely independent of the properties of the object that is no evaporation occurs. Moreover, if we assume that the object is completely independent of the properties of water surface evaporation exactly equals, salinity reduced the water vapor pressure resulting in reduced evaporates. The first stage of evaporation decreases by increasing salinity, evaporation would be justified.
M. Tabei; Saeid Boroomand Nasab; A. Soltani Mohamadi; A. H. Nasrollahi
Abstract
Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, ...
Read More
Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage) are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution.
Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment), S2 (S1 +0/5), S3 (S1 +1) and S4 (S1 +1/5) dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm) from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores.
Results and Discussion: The results of this section of work have shown in the form of chart drawing and calculating identity indices or recognition (R2), maximum error (ME), normalized root mean second error (NRMSE) and coefficient of residual mass (CRM) in the distances on the stack, 10 and 20 cm dropper. The amount of R2, ME, NRMSE and CRM in 10 cm dripper were calculated to be 0/81, 0/46, 11/77 and 0/018 mg/cm3, in 20 cmdripper 0/78, 0/48, 16/44 and 0/1172 mg/cm3 and on the stack 0/75, 2/8, 18/19 and 0/07 mg/cm3. The highest recognition factor was a distance of 10 cm dripper (81 percent) and then reduces to keep distance from dripper recognition factor . This subject is the highest potency close to the dripper. This can happen for less saltiness in the spaces close to the dripper according to drip irrigation features. The high ME amount shows the less attendance computing of the model, it comes to it’s maximum on the stack, however (2/8 mg/cm3), the distances near to the dripper the obtained ME amount shows the good care in estimating soil saltiness. Also, based on being positive CRM parameter amount was seen. It is less in the amount observed in anticipating of saltiness in the anticipated amount. By considering NRMSE factor, higher amount of anticipating is based on observations.
Conclusion: Generally, the results obtained from stimulating of SWAP show that this model can stimulate saltiness distribution in soil under drip irrigation with salty water. This model can be used as useful tools for evaluation of saltiness distribution around the dripper.