سعید فرزین؛ رضا حاجی آبادی؛ محمد حسین احمدی
چکیده
ماهیت دینامیکی پدیدههای هیدرولوژیکی و نیز محدودیت دسترسی ابزارهای ریاضیاتی مناسب، سبب گشته که اکثر مطالعات پیشین در این زمینه، منجر به نگرشی تصادفی و احتمالاتی گردد. بررسی قطعی و یا تصادفی بودن فرآیند دینامیکی مقادیر تبخیر از سطح آب دریاچهها، به منظور انتخاب روش مناسب شبیهسازی و بررسی قابلیت پیشبینی، موضوع مهم و بحث برانگیزی ...
بیشتر
ماهیت دینامیکی پدیدههای هیدرولوژیکی و نیز محدودیت دسترسی ابزارهای ریاضیاتی مناسب، سبب گشته که اکثر مطالعات پیشین در این زمینه، منجر به نگرشی تصادفی و احتمالاتی گردد. بررسی قطعی و یا تصادفی بودن فرآیند دینامیکی مقادیر تبخیر از سطح آب دریاچهها، به منظور انتخاب روش مناسب شبیهسازی و بررسی قابلیت پیشبینی، موضوع مهم و بحث برانگیزی است که در این تحقیق به آن پرداخته شده است. در این راستا، با توجه به قابلیت فراوان نظریه آشوب و مدل هوشمند شبکه عصبی در مطالعه رفتار سیستمهای غیرخطی پویا مقادیر ماهانه تبخیر سطح آب دریاچه ارومیه در شمالغربی ایران، طی یک دوره آماری 40 ساله (1346-1386) با استفاده از مفاهیم این دو روش مورد بررسی و پیشبینی قرار گرفته است. نتایج بررسی شاخصهای تعیین ماهیت آشوبناکی دادههای تبخیر؛ نمای لیاپانوف مثبت و مقدار غیرصحیح شیب نمودار بعد همبستگی در مقابل شعاع همبستگی، همگی نشانگر رفتار کاملا آشوبناک سری زمانی تحت بررسی میباشد. نتایج صحتسنجی حاکی از دقت بالای نظریه آشوب و مدل شبکه عصبی مصنوعی- اندکی دقت بالاتر- میباشد به طوریکه میانگین خطای مطلق (MAE) و جذر میانگین مربعات خطا (RMSE) در شبکه عصبی مصنوعی نسبت به نظریه آشوب به ترتیب 51/2 و 25/2 میلیمتر کاهش یافتهاند. همچنین نتایج مربوط به ارتفاع تجمعی تبخیر در دوره صحتسنجی حاکی از برتری 8/3 درصدی شبکه عصبی مصنوعی نسبت به نظریه آشوب دارد.