Irrigation
M.R. Emdad; A. Tafteh; N.A. Ebrahimipak
Abstract
Introduction
Quinoa (Chenopodium quinoa) is native plant in Bolivia, Chile and Peru, which is widely adapted to different climatic conditions and can grow in all soils. This plant has shown adequate adaptation to arid and semi-arid areas conditions and is planted from areas with low elevation ...
Read More
Introduction
Quinoa (Chenopodium quinoa) is native plant in Bolivia, Chile and Peru, which is widely adapted to different climatic conditions and can grow in all soils. This plant has shown adequate adaptation to arid and semi-arid areas conditions and is planted from areas with low elevation (sea level) to areas with an altitude of 4000 meters above sea level. Quinoa is often cultivated in areas with limited water resources, and it is rare to find quinoa cultivation under full irrigation conditions. Some studies have shown that quinoa yields slightly better under full irrigation (without water restriction) than quinoa under deficit irrigation. Crop growth models are very important tools in the study of agricultural systems and they can be used to simulate the yield of crop in different conditions. Given that the study of performance limiting factors requires numerous and costly research and experiments in different areas, so finding a way to reduce the number, time and cost of these experiments is worthwhile. Aquacrop model is one of the applied models that are used to simulate yield variations in different water and soil management.
Materials and Methods
This investigation was carried out in two growing seasons of 2019 and 2020 to determine the efficiency of Aquacrop model for simulating Quinoa grain yield and biomass under imposing three stress treatments of 30, 50 and 70% of water consumption in development and mid-growth stages. Plant spacing was 40 cm between rows and 7 cm between plants within rows. Seeds of quinoa (Titicaca cultivar) were cultivated in the first decade of August 2019 and in the third decade of July 2020. The experiment was a randomized complete block design with three replications. Three deficit irrigation treatments including 30, 50 and 70% of available water were considered in two growth stages (development and mid-growth) in 18 experimental plots (3 × 4 m). Soil moisture in rooting depth (about 40 cm) was measured by TDR and after the soil moisture of the treatments reached the desired values, plots were irrigated until the soil moisture reached the field capacity. The results of grain and biomass yield in the first year were used to calibrate the Aquacrop model and the results of the second year were used to validate the model. Root mean square error (RMSE), normalized root mean square error (NRMSE), Willmott index (D), model efficiency (EF) and mean error deviation (MBE) were used to compare the simulated and observed values.
Results and Discussion
The results of the first and second year were used to calibrate and validate the model, respectively. The results of the first year showed that irrigation with 50 and 70% of available water in the development stage reduced quinoa grain yield by 17 and 33%, respectively, compared to the control treatment. The application of these two deficit irrigation treatments in the middle stage reduced the yield by about 12 and 28%, respectively. The results of comparing the statistical indices of grain yield, biomass and water use efficiency showed that the NRMSE for grain, biomass and water use efficiency were 9, 8 and 14% in the first year and 9, 6 and 9% in the second years. Furthermore, the EF for these traits were 0.81, 0.77 and 0.64 in the first year and 0.68, 0.71 and 0.62, in the second year, respectively.
Conclusion
The results of calibration and validation of the model showed the accuracy and efficiency of the Aquacrop model in simulating grain yield, biomass and water use efficiency of quinoa. This model can be used to provide the most appropriate scenario and irrigation management for different levels of deficit irrigation managements.
Irrigation
M. Emadi; M. Noshadi; A.A. Ghaemi
Abstract
Introduction: According to expantion of urbanization, it is necessary to create green space as the most important environmental factor in moderate cities. However in recent decades, shortage of water resources is one of the problems facing the expansion of green space especially grass type. Therefore, ...
Read More
Introduction: According to expantion of urbanization, it is necessary to create green space as the most important environmental factor in moderate cities. However in recent decades, shortage of water resources is one of the problems facing the expansion of green space especially grass type. Therefore, the application of management methods such as deficit irrigation is very important. Development of green space requires sufficient water supply and according to the climatic conditions of our country, finding alternative methods and resources for effective irrigation and utilizing all available capacities is one of the main goals of municipalities and water organizations.
Materials and Methods: This research was performed in a greenhouse with an area of 120 square meters located in the college of Agriculture of Shiraz university with longitude 52032’, latitude 29036’,1810 height above sea level, and in flower pots with dimensions of 30 * 30*30 in order to investigate the effect of water stress in the traditional irrigation method on morpho-physiological factors and water productivity in two variety long grass. The research was in the form of split plots based on a random full canton with three replication and three levels (%100 per) (w1), (%75 per) (w2), (%50 per)(w3) of water requirement. The grass used in this design is Festuca, arundinacea Schreb with two variety named Asterix and Talladega which are considered as cold grasses and has a root depth of 15-20 cm. The first 3 cm of sand (to create drain conditions) was placed in the bottom of the flower pot, and then 24 cm of soil was poured on it and compacted until it reached the required density. On April 10, two variety of grass seeds were poured manually on the pots (10 grams of seeds per pot). Then, 100 gr of rotten and screened animal dung was poured on the seeds in each flower pot and irrigated with a hose by a traditional (manual) system. Early cultivation was done manually due to the application of more water and the establishment of grass. In this way, every day for a week, two to three times irrigation and after the seeds germinate (10 days after cultivation), once-daily irrigation and until the seeds germinate completely (20 days after cultivation), the irrigation period was once between 7 until 15 days, and then water stress was imposed. The first grass mowing was done after the grass was completely established (30 days after cultivation). Also, in order to compensate for the shortage of nutrients in the soil after two months (July) 6 gr /m2 of urea fertilizer (0.54 gr/ m2 to each flower pot) was applied. The onset of stress was two months after cultivation (July 10), and the duration of stress was 45 days. To determine the water requirement a separate flowerpot among the other flowerpots was located, and provide the moisture to FC level. Every other day, the water lost by this flower pot compared to the initial weight (FC), the same amount of water was given to the flowerpots with 20% more as for the leaching requirement.
Results and Discussion: Analysis of experimental data was performed by SAS 9.4 statistical software, and Duncan’s multiple range experiments at 5% level were used to compare the means, at the level of 5% probability. Results and data analysis was investigated under water stress in two varieties.
Dryness stress and water use efficiency: Water productivity in both varieties of grass and in different irrigation treatments did not change significantly at 95%. So decline in the amount of irrigation water has not affected water productivity.
Interaction of dryness and grass quality: The results showed that water stress and the interaction of water stress and grass variety on the appearance quality of grass were not significantly different at 95% and in the second ten days of August, the appearance quality was more desirable than in the first half.
Interaction of dryness and relative leaf water content of leaf: The relative water content of the leaf was weekly measured during the stress period. The results of comparing the mean relative water content (RWC) of leaf under water stress in two types of Festuca grass showed that the effect of water stress interaction was significant in Asterix grass variety on the relative water content of leaf at 95% level. The relative water content of the leaves is a good index of the water situation of the leaves, and its reduction in the leaves causes wilting and reduces the freshness and appearance quality of the grass and reducing the relative water content of the leaf has not affected the appearance quality of the grass.
Interaction of dryness and leaf growth rate: The leaf growth rate was measured during the stress period (monthly) in three ten-day periods (August). The results of comparing the means showed that the effect of water stress interaction and two variety of grasses on leaf growth rate was not significant during the first ten days. In the second ten days, the effect of water stress was significant in both Asterix and Talladega grass and growth rate in irrigation treatments of 75 and 50% (percentage) of full irrigation was significantly different from full irrigation.
Conclusion: The results of this study showed that deficit irrigation could increase water use efficiency without reducing the quality of green cover. With less water consumption (half full irrigation), the appearance quality of the grass will be well maintained. The relative water content of the leaf decreased as dryness stress progresses and causing changes in the cell membrane and thus increasing electrolyte permeation from the cell. Considering that dryness stress has not reduced the appearance quality of the grass, reducing the relative water content of the leaf has not affected the appearance quality of the grass. Generally, the growth rate in all three decades was maximum in dryness stress 75% (percentage), which indicates the high photosynthesis of the plant in this stress.
Elahe Zorati pour; amir soltani; naser alemzadeh ansari
Abstract
Introduction: when the loss of water from the leaves by transpiration process exceeds the water in the root zone, water stress occurs. If water uptake reduction functions can predict the flow of water to the roots properly, with no need to field measurements, it is possible to determine the time of irrigation ...
Read More
Introduction: when the loss of water from the leaves by transpiration process exceeds the water in the root zone, water stress occurs. If water uptake reduction functions can predict the flow of water to the roots properly, with no need to field measurements, it is possible to determine the time of irrigation for maximum yield with the help of chemical and physical properties of water and soil and specific plant parameters. From a conceptual point of view, two main approaches of water uptake modeling exist, which differ in the way they predict the volumetric rate of root water uptake. The microscopic models describe the water flow towards the single root. Macroscopic models are based on the principles of energy and mass transfer and described water uptake by the entire root area, regardless of the impact of individual roots. In general, macroscopic models have been considered in plant growth and soil-plant-atmosphere models. The most important models of macroscopic water uptake can be referred to the model of Feddes et al. (1978), the Van-Genuchten model (1987), the Dirksen et al. (1993) and Homaee (1999). Saraei Tabrizi et al. (2015) with an evaluation of the water uptake reduction functions under water stress conditions on basil plant showed that the Homaee (1999) model was more suitable than other models. The purpose of the present study is to evaluate the four macroscopic water uptake reduction functions of Feddes et al., (1978), Van Genuchten (1987), Dirksen et al., (1993) and Homaee (1999) in order to predict water uptake by lettuce root and determining the most suitable model to predict the reduction of water uptake of lettuce under water stress conditions.
Materials and Methods: The experiment was conducted in a completely randomized design with three replications in 2017 in the research greenhouse of Agriculture Faculty, Shahid Chamran University of Ahvaz. The experiment consisted of irrigation water at three levels (I1:100%, I2:80% and I3:60% of crop water requirement). The soil texture was medium. The cultivation was indirect (seedling) in pots of diameter 22 and height 30 cm. For this purpose, 9 pots were used. The plant's growth period was about 70 days. The irrigation was done by the manual method and by the graduated bushel. During the growing season, treatments were irrigated fifteen times. The volume of water used for treatments I3, I2 and I1 were respectively 792, 1055 and 1320 )m3.ha-1(. The weighted method was used to determine the time of irrigation and the soil moisture characteristic curve was used to measure the matric potential. 12 pots were considered as destructive ones for measuring plant weight as it was not possible to measure the weight of plants per day. In order to evaluate the water uptake reduction functions, relative transpiration was plotted against the absolute value of matric potential and the best model was determined by fitting them, to the measured data. For this purpose, the statistical indicators of the Maximum Error (ME), coefficient of determination (R2), Root Mean Square Error (RMSE), modeling efficiency (EF) and Coefficient of Residual Mass (CRM) were used.
Results and Discussion: Based on the results, the model of Homaee (1999) and the model of Van Gennuchten (1987) had the best fit on the whole range of measured data, respectively. Then, the model of Dirksen et al. (1993) and, the model of Feddes et al. (1978) were ranked. In addition, in models that |h| was smaller than 8000 cm, like Feddes et al. (1978), Van Gennuchten (1987), Dirksen et al. (1993) showed good fit and proximity to each other. Babaazadeh et al. (2017) in studying the effect of salinity and drought stress on the uptake of root water of basil, concluded that the Homaee (1999) model had the best agreement with experimental data and increasing drought stress reduced the potential of water uptake by roots. Also Saraei Tabrizi et al. (2015) concluded that the Homaee (1999) model had the best fit with the measured data and the results were in accordance with the results of this study. Based on the results of this study, for simulation of water uptake, the models of Feddes et al. (1978) and Dirksen et al. (1993) are slightly overestimated and Van Gennuchten (1987) and Homaee (1999) models have slightly underestimated. Homaee (1999) in his research was conducted that in treatment of 70% water requirement supply for alfalfa, Feddes et al. (1978) model was overestimated and other models were underestimated which are close to the results. Homaee (1999) model was more consistent compared to other water uptake models because of considering two thresholds for the model.
Conclusion: According to the results, Homaee (1999) model was better than other models (RMSE=9.14 and ). The results of the models of Feddes et al. (1978) with R2 =0.43 and RMSE = 16.46, Van Gennuchten (1987) with R2 = 0.51 and RMSE = 8.62 and Dirksen et al. (1993) with R2 = 0.48 and RMSE = 12.5 were closely related to each other.
Morteza Pouzesh Shirazi; Hassan Haghightnia; Rahim Khademi
Abstract
Introduction: Tomato is one of the most important vegetables that are used by human. High price of tomato due to its out of season production in Bushehr province has made a great tendency for farmers of this area to cultivate it in fall and winter in nearly 12000 hectares in the province. Mean annual ...
Read More
Introduction: Tomato is one of the most important vegetables that are used by human. High price of tomato due to its out of season production in Bushehr province has made a great tendency for farmers of this area to cultivate it in fall and winter in nearly 12000 hectares in the province. Mean annual precipitation is about 250 mm per year. Maximum and minimum annual temperatures are 51 and -1 Celsius degrees. Mean annual evaporation is 3000 mm. Recent droughts and going down of water table because of over usage of underground water are main problems of this region that have enforced farmers to decrease irrigation water utilization and try to increase water use efficiency by using new technologies. Therefore, any new technical methods which can increase water use efficiency will help crop production quality and quantity and result in yield stability in the region. Many researchers have proved that mycorrhizal fungi can improve agricultural systems sustainability because of their ability to increase water absorption due to their long and expanded hyphae. Also they are known to increase nutrient uptake from soils even poor in minerals. Therefore, a greenhouse project was designed to determine the effect of Arbuscular mycorrhizal fungi on nutrients uptake and water use efficiency of tomato under drought stress in Bushehr province in southern Iran.
Materials and Methods: The experiment was carried out on completely randomized block design in factorial with three replications during 2016-2017 in the greenhouse of Bushehr agricultural and natural resources research organization located in Southern Iran. Factors were as follows: 1) four Arbuscularmycorrhizal fungi (Glomus mosseae ،Glomus intraradices، Glomus vsersiform and Glomus caledonium) and a control (without inoculation), 2) irrigation at three levels based on soil moisture depletion at I1=25, I2=50 and I3=70 percent of available water to show stress (from non-stress to low and high stress levels). Soil used for this experiment was dried in sunshine for one month to be evacuated from any native fungi. Soils of the region are calcareous ones with low salinity limitation (EC= 3.70 dS/m) and poor nutrition elements and slightly alkali (pH=7.9). Inoculation of roots by fungi was done by pouring one spoon of fungi near tomato roots while cultivating the transported seedlings in the pot. This would help the roots to be exposed to fungi directly while spreading through growing. Irrigation water used were 22.3, 20.1 and 17.7 liter for each pot filled with 10 kg soil during the season. The experiment lasted 100 days and tomato properties were measured such as yield, colonization percent, nutrition elements concentration and also, water use efficiency. Dried leaves were milled and put in furnace at 550 Celsius degrees. Roots were soaked in water for five minutes to be detached from soil and cleaned toughly. Detached roots were maintained in small glass jars filled with alcohol and were kept in refrigerator at 5 Celsius degrees. Roots were then colored by Try pan blue method and root colonization percent was measured by Grid line intersect method.
Results and Discussion: Results showed that interaction effect of mycorrhizal fungi and irrigation levels was significant at 1% level on tomato properties (except for N concentration in leaves). Mean comparison with Duncan`s test proved that increase in drought stress caused decrease in all tomato properties but fungi inoculation could mitigate water shortage in comparison to non-inoculated tomatoes Higher drought stress decreased colonization significantly. Drought stress caused significant deficiency in nutrition elements such as N, P and Fe, however some elements such as K, Zn and Mn were increased in medium drought stress. Inoculation with all mycorrhizal fungi improved nutrition elements concentration in tomato leaves. Water use efficiency was increased 67.9, 49.6 and 52.1 percent from non to medium and high stress respectively in tomatoes treated with Glomus intraradices.
Conclusion: Using of mycorrhizal fungi specially Glomus intraradices and Glomus caledonium increased tomato water use efficiency and improved growth properties due to the increment of water resistance ability in plant. This phenomenon is caused by higher nutrition elements uptake by roots and optimization of water relationship in tomato in the presence of mycorrhizal fungi. According to results, it is suggested tomato roots inoculation with mycorrhizal fungi especially in regions with high water stress potential.
Javad ramezani moghadam; yaser hosseini; Mohammad Reza Nikpour; atieh abdoli
Abstract
Introduction: The largest share of water consumption in Iran is related to the agricultural sector. Therefore, in order to save water resources, priority is given to reducing irrigation water consumption. On the other hand, reducing of water quality and salinization are the main problems which are commonly ...
Read More
Introduction: The largest share of water consumption in Iran is related to the agricultural sector. Therefore, in order to save water resources, priority is given to reducing irrigation water consumption. On the other hand, reducing of water quality and salinization are the main problems which are commonly found in the areas with limited water resources. One of the most important effects of salinity is the reduction of yield and its inhibitory effects on plant growth and metabolism. Also, increasing salinity can reduce potassium, calcium and magnesium ions. One of the significant points regarding the effects of salinity stress is a significant decrease in the hydraulic conductivity of the roots, which leads to a decrease in the water use efficiency index. According to the food and agriculture organization (FAO), more than 40 percent of Iran's irrigated lands are affected by salinity stress, which is generally found in dry and semi-arid areas. Therefore, studying the combined effect of stress caused by salinity and water stress can be used to provide management solutions for irrigation and crop production.
Materials and Methods: This study was conducted in greenhouse laboratory at University of Mohaghegh Ardabili, Ardabil, Iran during August to November 2016. In this research, the effects of saline water on cherry tomato yield under water stress conditions were investigated. The applied treatments included irrigation with saline water (in two levels: S1=4ds/m and S2=7ds/m) and water stress (in three levels, irrigation at 40, 50 and 65% field capacity, respectively, I1, I2,I3). The experimental design used in this research was a completely randomized block design with four replications. On the other hand, in order to compare the plant yield under water stress and salinity conditions with non-stress conditions, control treatment with salinity characteristics less than 1ds/m and irrigation without water stress were used in three replications. In this experiment, cherry tomatoes were cultivated in the pots with diameter and height of 26 and 27 centimeters, respectively. The moisture meter (Model: PMS-714) was also used to measure soil moisture and determine the irrigation time. The most important parameters included cherry tomato yield, total evapotranspiration and water use efficiency index. It should be mentioned that analyses of the results were done by MSTATC software (Version: 2.10).
Results and Discussion: The results of this study showed that the interaction between two factors of water and salinity stress on the parameters was not significant, but the effects of salinity stress on yield, total evapotranspiration and water use efficiency (in two levels: 2% and 5%) are significant. Also, the greatest effect of salinity stress on cherry tomato yield was observed, so that by increasing the amount of irrigation water salinity from 4 to 7 ds/m, the yield was decreased by 27%. Also, the performance in salinity treatments of S1 and S2 decreased by 27.2% and 46.7%, respectively, compared to the controled treatment. Probably the reason for the yield reduction caused by decreasing in plant evapotranspiration and plant growth and metabolism. In addition, water use efficiency index in treatments of S1 and S2 decreased by 3.4% and 22.3%, respectively, compared to the controlled treatment. As it can be seen, the differences in water use efficiency between the control and S1 treatments were not significant. In this study, the average values of Ky (plant response coefficient to salinity and water stresses) were achieved 1.39, which was higher than the value that was reported by FAO for tomato plant under water stress conditions (equal to 1.05). This can be due to the significant effect of saline irrigation water on the yield of the tomato plants. Finally, based on the results of this research, it can be said that although salinity decreased yield significantly at 1% confidence level, in the coming years, with severe water resource constraints and increased costs for its preparation, this yield loss can be economical and feasible.
Conclusions: In this research, the effect of saline water on cherry tomato yield under water stress conditions was investigated. According to the results of this study, with increasing salinity of irrigation water from 4 to 7 ds /m, total evapotranspiration decreased by 10%. On the other hand, due to salinity stress, tomato yield was decreased to 27% in the most salinity levels of irrigation water compared to control treatment; one of the main reasons of which could be the reduction of total evapotranspiration in the growing season. In the end, the important point to note is that although, based on the results of this study, utilization of irrigation saline water decreased the yield, total evapotranspiration and water use efficiency by 27%, 8.9% and 19.2%, respectively compared to the control treatment, but in the near future, by increasing the water production costs and the quantitative reduction of water resources, even use of saline water is economically feasible and justifiable.
Mojtaba Cheraghizade; Ali Shahnazari; Mirkhaleg Ziatabar Ahmadi
Abstract
Introduction: According to the Statistical Center of Iran, the country's population between 1957 and 2017, has increased approximately from 19 people to 80 million. With population growth, the water demand is increased and water resources are threatened cumulatively. Agriculture is recognized as the ...
Read More
Introduction: According to the Statistical Center of Iran, the country's population between 1957 and 2017, has increased approximately from 19 people to 80 million. With population growth, the water demand is increased and water resources are threatened cumulatively. Agriculture is recognized as the main water consumer in the country. Due to the arid and semi-arid climate of the country, it is essential to use water reduction strategies such as deficit irrigation (DI) and partial root zone drying (PRD) deficit irrigation in agriculture. In case of water shortages, DI is an optimal solution for production, which is usually accompanied by a reduction in product per unit area. The base of PRD is keeping dry the half of root while irrigating the other half. The plant root in the wet area absorbs enough water. The other part of the root in dry soil, with a reaction to dryness and sending symptoms to the stomata, affects their opening size and reduces water losses. Sunflower is one of the four major oil producing plants in the world. The high volume of this product's import causes the country's strong dependence on oil import and the currency's outflow from the country. Although all living and non-living stresses are considered to be major factors in reducing production, water deficit stress is one of the main factors limiting the production of sunflower; Therefore, studying the reaction of this plant to different drought stress conditions and providing a solution to reduce the negative effects of dryness would be essential.
Materials and Methods: The present study was conducted on sunflower plant (Hysun 25) in a research farm of Sari Agricultural Sciences and Natural Resources University (SANRU) in 27 plots (5 × 5 square meters). Each plot consisted of 6 rows of planting at a distance of 75 cm from each other and 5 meters long. Sunflower seeds were planted at a depth of 4 cm from the soil and at a distance of 20 cm from each other. The experiment was conducted by using split-plot design, with three main factor (irrigation interval) and three sub-factor (irrigation water amount) in randomized complete block design in three replication. The irrigation intervals were irrigation after 20, 35 and 50 mm evaporation from class-A evaporation pan (F-20, F-35 and F-50 respectively). The sub-factor was irrigation water in levels of 100%, 75% and 55% of water demand (FI, PRD-75 and PRD-55 respectively). Controlling the volume of water delivered to each treatment was carried out using a volumetric flow meter. The application of irrigation treatments was carried out six weeks after planting. The irrigation for FI was conducted regularly at both sides of the root and for PRD it alternatively changed at the right and left sides of the root. The studied traits were irrigation water use efficiency (IWUE, kg/m3), height (H, cm), the flower diameter (D, cm), the seeds number per flower (SN), the 1000 seeds weight (W, gr) and the chlorophyll index (SPAD). Statistical analysis of data conducted by SAS software using Duncan test (1% level). Diagrams extracted by Microsoft Excel software.
Results and Discussion: Evaluation of irrigation interval factor based on the experiment two years data, indicated that the best results for plant growth parameters was for F-20. Also, the best results for sunflower plant growth parameters was for FI. According to the significant difference between FI and PRD-55 at most of the growth parameters, it’s suggested to conduct PRD-75 for PRD. For the irrigation interval factor, there was significant difference for most of the plant growth parameters between F-20 and F-50. Therefore, considering this case as well as the problem of increasing the operating cost by reducing the irrigation interval, F-35 is recommended for irrigation interval. It’s concluded that there was significant difference between all of the irrigation interval treatments by analyzing the IWUE trait. The highest amounts was for F-50 and the lowest was for F-20. Despite the increase in the value of IWUE in PRD-75 in comparison with other treatments for each two years of the experiment, this difference was not significant. According to the non-significant difference between F-35 and F-50 for IWUE at the second year of the experiment and this trait relative increase at PRD-75 in comparison with two other treatments, it’s suggested to conduct PRD-75 with F-35 to have higher IWUE.
Conclusion: Simultaneous analysis of sunflower’s IWUE and its growth parameters showed that it could be possible to save in irrigation water use and increase the IWUE with the lowest decrease in the sunflower plant growth parameters by applying PRD-75 and F-35.
leila zare; abdolmajid ronaghi; Seyed Ali Akbar Moosavi; Reza Ghasemi
Abstract
Introduction: Vermicompost is one of the important bio-fertilizer which is the product of the process of composting different organic wastes such as manures and crop residues using different earthworms. Vermicomposts, especially those are derived from animal wastes,contain the large amounts of nutrients ...
Read More
Introduction: Vermicompost is one of the important bio-fertilizer which is the product of the process of composting different organic wastes such as manures and crop residues using different earthworms. Vermicomposts, especially those are derived from animal wastes,contain the large amounts of nutrients compaired with the composts prepared from crop residues. Vermicomposts contain plant available form of nutrients such as nitrate nitrogen, exchangeable phosphorus and potassium, calcium and magnesium. Nowadays, the use of vermicompost in sustainable agriculture to improve the growth and quality of fruits and crops is very common. Drought occurs when the amount of moisture in soil and water resources and rainfall is less than what plants need for normal growth and function. Two thirds of farm lands in Iran have been located in arid and semi-arid regions with annual rainfall less than150 mm that has been distributed irregularly and unpredictable during growth season imposing water stress in most crops. It indicates the importance of water management and proposing different strategies for mitigating detrimental effect of water stress in croplands. Due to the fact that crops nutrient management under drought and water stress using organic fertilizers is an effective method in reaching to high yields in sustainable agriculture, the objective of the present study was to investigate the influence of vermicompost application on reducing the adverse effects of water stress on the growth and chemical composition of corn in a calcareous soil.
Materials and Methods: In order to study the influence of water stress and application of vermicompost on corn dry matter yield and nutrients concentration of corn shoot, a greenhouse factorial experiment (4×3) in completely randomized design with three replications was conducted in college of agriculture, Shiraz university, Shiraz, Iran. The factors consisted of four vermicompost levels (0, 10, 20 and30g kg-1soil equal to 0, 20, 40 and 60 Mg ha-1) and three moisture levels(100, 80and 60%of field capacity(FC)). The soil samples were collected (0-30 cm depth) from a calcareous soil (Fine, mixed, mesic, Typic, Calcixrepts), located at Bajgah, Shiraz, Iran. Soil samples were mixed thoroughly with different levels of vermicompost and transfred to plastic pots. Six corn seeds were planted in each pot and were thinned to three uniform plants, one week after germination. Eight weeks after germination, corn shoots were harvested, dried and recorded. Plant samples were grind using a portable grinder and transferred to the laboratory for chemical analysis. The collected data were statistically analysed using SAS software (9.1.3) package.
Results and Discussion: The results indicated that with increasing the levels of vermicompost, dry matter yield and concentrations of total nitrogen (TN), phosphorus (P), iron (Fe), copper(Cu) and zinc (Zn) in corn shoots were significantly increased. But, due to the antagonistic relationship between manganese (Mn) and Zn or Fe,concentrations of Mn were significantly decreased. However, the concentration of Mn was in the sufficiency range. The highest dry matter yield and concentrations of nitrogen and phosphorus in corn shoot was observed at 30 g kg-1 vermicompost treatment, with 19, 10 and 20 % increase (compared to the control), respectively. The application of 30 g kg-1 vermicompost increased the concentrations of Zn, Cu and Fe by 41%, 90% and 75%, respectively and concentration of Mn decreased by 11.88%, compared to the control. Increasing the levels of water stress increased significantly the concentration of nutrients in corn shoot due to the reduction of corn biomass. The highest increase in nutrient concentrations was observed at 60% FC moisture level. Nitrogen and phosphorus concentrations in corn shoots by 12.5and 22.5% and Zn, Cu, Fe and Mn by 25, 83, 43and29% were higher compared to those of control (100% FC), respectively. The interaction effects of water stress and vermicompost on the concentrations of shoot N and Cu were significant and both were incresead by simultanoeus application of vermicompost and levels of water stress. The applicaion of 30 g kg-1 vermicompost (about 60 ton ha-1) under 60% FC moisture level increased significantly dry matter yield and the concentrations of nitrogen, phosphorus, zinc, copper and iron in corn shoot by 29%,5.5%, 23, 110, 41 and 71 percent compared to the control, respectively. However, because of the antagonistic relationships,the iron or manganese concentrations were reduced, but were yet in the sufficiency range. The use of 30 g kg-1 vermicompost under 80% FC moisture level Also increased significantly the concentrations of nitrogen, phosphorus, zinc, iron and copper by 9, 23, 24, 59 and 43 percent compared to the control, respectively.
Conclusion: The applicaion of 30 g kg-1 vermicompost increased significantly dry matter yield and the concentration of nitrogen, phosphorus, zinc, copper and iron in corn shoot under water stress treatments. In conclusion, the application of vermicompost mitigated the detrimental effects of water stress on corn dry matter yield and concentration of nutrients due to the positive effects of compost on physical, chemical and biological properties of the calcareous soil.
Hamid Reza Salemi; Ali Reza Tavakoli
Abstract
Introduction: Water crisis as a majorlimitation factor for agriculture, like other arid and semiarid regions exists in Isfahan province which is located in the central part of the Zayandehrud River Basin (ZRB). Rice appears to be the far-most profitable crop but at the same time it has a major impact ...
Read More
Introduction: Water crisis as a majorlimitation factor for agriculture, like other arid and semiarid regions exists in Isfahan province which is located in the central part of the Zayandehrud River Basin (ZRB). Rice appears to be the far-most profitable crop but at the same time it has a major impact on basin scale water resources, especially affecting downstream farmers. In the study area (ShahidFozveh Research Station), the water resources for agricultural production face heightened competition from other sectors like industry and domestic use. This necessitates considering different crops, altered agricultural systems and innovative methods that can reduce the water requirements for the irrigation of rice. The Alternative Wetting and Drying (AWD) seems to be an effective method reducing water use for rice crops and possibly save the water for downstream users. There have been no qualitative evaluations of rice production under deficit irrigation practices in Isfahan area. This study sought to determine, under study area conditions, the quantities of water irrigation used with AWD practices, the resulting water productivity (WP) and the effects of alternative irrigation management on yield, quality indices and rice production performance.
Materials and Methods: The ZRB (41,500 km2) is a closed basin with no outlet to the sea. The research was conducted in the Qahderijan region of Isfahan province, which is located in the central part of the ZRB. The ShahidFozveh Agricultural Research Station (32°, 36’ N, 51°, 36’ E) is located at the altitude of 1612 m above the sea level. In order to improve WP and illustration of the impact of various levels of flooding depth on grain yield and quality indices at rice production, a field experiment (3000 m2) was conducted at ShahidFozveh Research Station for 2 years arranged in a split plot design with three replications. It will be necessary to use different scenario of water flooding depth management to achieve the highest irrigation application efficiency and WP. The treatments included: three levels of irrigation managements I1: permanentflooding under 3.5 cm water during growth period, I2: permanent flooding under2.2cm water during growth period and I3: 0-1.5cm. (AWD) were considered as main plots and eight advanced rice cultivars (Geredehmahali, Zayandeh-rud, Sazandegi , Hasani, 67-97, 67-113, 67-47 and 67-72) as sub plots. The treatments were compared based on grain yield and quality indices for irrigation management and rice varieties including: amylose content (AC), Gelatinization temperature (GT) and gel consistency (GC). Production (grain yield), quality indices, the consumption water, WP and cultivars reactions to different irrigation management were evaluated in different treatments. The soil of the experimental area, according to USDA Soil Taxonomy 1994 is of FINE CLAYEY. At the soil depth of 1m, soil salinity (6.2 dS.m-1), water salinity (3.9 dS.m-1), and soil moisture at saturated capacity (48 Vol. %) at the field site were measured or experimentally obtained in the Isfahan Soil and Water Laboratory. The results were subjected to an ANOVA to analyze the effects of the treatments and their interactions using PROC GLM (SAS 9.1, SAS institute Ltd., USA). Duncan’s multiple range tests at 0.05 probability level was used for paired mean comparison.
Results and Discussion: Results showed that water flooding depth treatments had significant effect on gel consistency, geletination degree and WP (P0.01). Significant differences (P0.01) were noticed in Gelenation degree, gel consistency, grain yield, WP among the cultivars. Also cultivars have significant effect (P0.05) on amylose contents. The highest magnitude of WP was calculated 0.91kg.m-3for (I3) followed by Zayandehrud, 67-113 and Sazandegi with 0.86 and 0.85, respectively. Maximum WP obtained from AWD irrigation management and Zayandehrud rice variety, its amount was 9.1kg.mm-1. At this treatment with 33.4 percent reduction of irrigation water, have resulted only 11.1 percent decreased of paddy grain yield. Results showed that it is not necessary to maintain the rice field submerged in whole growth period. Considering the importance of water flooding depth optimization as the main scope in arid and semi-arid lands of Iran, (I3) is recommended.
Conclusion: During the two years of conduction of an experiment in ZRB with clay texture and mild saline water with the three (3) irrigation treatments imposed on the rice crop. The highest WP was achieved for (I3) followed by Zayandehrud, 67-113 and Sazandegi, respectively. It was found that the AWD irrigation management, despite its lower yield than other irrigation treatments, increased water productivity. Thus, this treatment is desirable therefore highly recommended for agricultural rice production in arid region.
M. Gheysari; M.M. Majidi; seyed majid mirlatifi; M.J. Zareian; S. Amiri; S.M. Banifatemeh
Abstract
The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. ...
Read More
The response of root to water stress is one of the most important parameters for researchers. Study of growth and distribution of root under different irrigation managements helpsresearchersto a better understanding of soil water content, and the availability of water and nutrition in water stress condition. To investigate the effects of four levels of irrigation under two different deficit irrigation managements on the root length of maize, a study was conducted in 2009. Irrigation managements included fixed irrigation interval-variable irrigation depth (M1) and variable irrigation interval-fixed irrigation depth (M2). Maize plants were planted in 120 large 110-liter containers in a strip-plot design in a randomized complete block with three replications. Root data sampling was done after root washing in five growth stages. The results showed that the effect of irrigation levels on root length was significant (P
M. Esmaeili; Bahman Farhadi Bansouleh; M. Ghobadi
Abstract
Introduction: Expansion of the area of oilseed crops such as soybean is one of the policies of Iranian agricultural policy makers as Iran is one of the major oilseed importers in the world. However, the area of this crop in Kermanshah province is negligible, but it could be cultivated in most parts ...
Read More
Introduction: Expansion of the area of oilseed crops such as soybean is one of the policies of Iranian agricultural policy makers as Iran is one of the major oilseed importers in the world. However, the area of this crop in Kermanshah province is negligible, but it could be cultivated in most parts of this province. The quantity and quality of the produced grain could be affected by environmental factors such as weather parameters and water availability. The aim of the current study was to investigate the effects of levels of deficit irrigation on the quantity and quality of soybean crop yield in Kermanshah, Iran.
Materials and Methods: For this purpose, a field study was conducted as randomized complete block design with four replications and four irrigation treatments at the research farm of Razi University, Kermanshah in 2012. The size of each plot was 4 * 4 m. Irrigation treatments consisted of four irrigation levels: 20% over irrigation (T4), full irrigation (T3 as control), 20% less irrigation (T2) and 40% less irrigation (T1). The reason to choose T4 treatment was the lack of confidence in estimated crop evapotranspiration as there was no local calibration of crop coefficient (Kc) for this crop. The required water for T3 treatment was calculated based on daily weather data using FAO-Penman-Montith equation. Daily weather data was recorded in a weather station which was located in the research farm and is available in the www.fieldclimate.com. As there was no rainfall during the crop season, all of the required water was supplied through irrigation. The required water for treatments of T1, T2 and T4 was considered as 60%, 80% and 120% of T3 treatment. The required water was applied using a hose connected to a volumetric flow meter with a liter precision. Total amount of applied water during the crop season was 4399, 5865, 7331 and 8797 m3.ha-1 in the treatments. Fertilizers were applied based on the recommendations of soil fertility experts. Weeds were controlled manually. Finally, the area of two square meters in the middle of each plot was harvested in order to determine crop yield in terms of grain, biomass, stem, pod, seed protein content and fat percentage and also water productivity index. Dry weights of the samples were measured after drying samples in the oven for48hours at 70° C. The percentage of fat and protein in the grains are also measured in the laboratory. Water productivity index was calculated for each treatment by dividing crop yield (in terms of grain, biomass, protein and fat) over seasonal water use. Statistical analysis of the results is also done using MSTATC software.
Results and Discussion: The highest and lowest crop yields were measured respectively in the treatments T4 and T1.The mean value of grain yield was 1084, 1367, 1716 and 1940 kg.ha-1,respectively in the treatments T1, T2, T3 and T4. These results showed a 36% decrease in the grain yield by decreasing 40% in the amount of supplied water. However, biological yield was decreasedby the level of irrigation, but the rate of reduction was lower than that of grain yield. By reducing irrigation application, thepercentage of grain protein content increased while the percentage of fat in the grain decreased. Considering simultaneous reduction in grain yield and fat content in the grain, severe reductions in fat yield (oil content) were observed under water stress conditions. Crop yield in terms of fat was reduced by 26.2 and 50.1 %, respectively in treatments T2 and T1 in comparison with T3 (control treatment). The maximum and minimum percentages of protein in the treatments were 31% and 27%, respectively in the treatments T1 and T4. Maximum water productivity in terms of grain, biomass and protein was achieved in T1 treatment respectively with the amounts of 0.24, 0.81 and 0.077 kg.m-3. Maximum and minimum fat percentage was 0.052 and 0.040 kg.m-3, respectively in the T4 and T1 treatments. In addition,the results indicated that water productivity index in terms of grain, biomass and protein increased while they decreased in terms of fat yield.The results of statistical analysis indicated that water productivity index in all terms except protein had significant differences (at 5%) with T3 treatment.
Conclusion: Crop yield and water productivity (except in terms of fat) was increased by increasing applied water. Considering all indices of treatment T2 (20% deficit irrigation), itwas suggested as the best treatment.
M. A. Khodshenas; J. Ghadbeiklou; M. Dadivar
Abstract
Introduction: Growing irrigation demand for corn production, along side with draws of ground water from stressed water sources, should be limited due to scarce resources and environmental protection aspects. Nitrogen fertilizer applied at rates higher than the optimum requirement for crop production ...
Read More
Introduction: Growing irrigation demand for corn production, along side with draws of ground water from stressed water sources, should be limited due to scarce resources and environmental protection aspects. Nitrogen fertilizer applied at rates higher than the optimum requirement for crop production may cause an increase in nitrate accumulation below the root zone and pose a risk of nitrate leaching. Improving nitrogen management for corn production has a close relation with soil water content. In this study, we investigated the effects of source and rate of nitrogen fertilizer and irrigation on silage corn production and nitrogen concentration, nitrogen uptake and residual soil nitrate in two depths.
Materials and Methods: This experiment carried out as split spli- plot in a Randomized Complete Block design (RCBD) with three replications, in Arak station (Agricultural research center of markazi province, 34.12 N, 49.7 E; 1715 m above mean sea level) during three years. The soil on the site was classified as a Calcaric Regosols (loamy skeletal over fragmental, carbonatic, thermic, calcixerollic xerochrepts). Main plots were irrigation treatments based on 70, 100 and 130 mm cumulative evaporation from A class Pan. Sub plots were two kinds of nitrogen fertilizers (Urea and Ammonium nitrate) and sub sub-plots were five levels of nitrogen rates (0, 100, 200, 300 and 400 kgN.ha-1). Nitrogen fertilizer rates were split into three applications: 1/3 was applied at planting, 1/3 at 7-9 leaf stage and 1/3 remainder was applied before tasseling as a banding method. Phosphorus was applied at a rate of 150 kg.ha-1in each season and potassium at a rate of 30kg.ha-1 (only in first growth season) based on soil testing as triple super phosphate and potassium sulfate, respectively. The corn variety of single cross 704 was planted at 20 m2 plots. The plants were sampled at dough stage from the two rows and weighted in each plot. Plant samples were dried in a forced air oven at 70ºC for at least 3 days before weighting. Total N concentration in the plant samples were determined using kjeldahl method. Nitrogen uptake by plants was calculated based on the total N concentration in plants multiplied by dry matter. Residual nitrate concentrations were determined in soil samples (0-30 and 30-60 cm depths) by diazo method. Combined analysis of variance was accomplished using the MSTAT-C software. Mean comparisons were done using Duncan multiple rang test (DMRT).
Results: The results showed that the main effect of water stress on dry matter yield was negative and significant (P
vahid Rezaverdinejad; M. Hemmati; H. Ahmadi; A. Shahidi; B. Ababaei
Abstract
In this study, the FAO agro-hydrological model was investigated and evaluated to predict of yield production, soil water and solute balance by winter wheat field data under water and salt stresses. For this purpose, a field experimental was conducted with three salinity levels of irrigation water include: ...
Read More
In this study, the FAO agro-hydrological model was investigated and evaluated to predict of yield production, soil water and solute balance by winter wheat field data under water and salt stresses. For this purpose, a field experimental was conducted with three salinity levels of irrigation water include: S1, S2 and S3 corresponding to 1.4, 4.5 and 9.6 dS/m, respectively, and four irrigation depth levels include: I1, I2, I3 and I4 corresponding to 50, 75, 100 and 125% of crop water requirement, respectively, for two varieties of winter wheat: Roshan and Ghods, with three replications in an experimental farm of Birjand University for 1384-85 period. Based on results, the mean relative error of the model in yield prediction for Roshan and Ghods were obtained 9.2 and 26.1%, respectively. The maximum error of yield prediction in both of the Roshan and Ghods varieties, were obtained for S1I1, S2I1 and S3I1 treatments. The relative error of Roshan yield prediction for S1I1, S2I1 and S3I1 were calculated 20.0, 28.1 and 26.6%, respectively and for Ghods variety were calculated 61, 94.5 and 99.9%, respectively, that indicated a significant over estimate error under higher water stress. The mean relative error of model for all treatments, in prediction of soil water depletion and electrical conductivity of soil saturation extract, were calculated 7.1 and 5.8%, respectively, that indicated proper accuracy of model in prediction of soil water content and soil salinity.