Nosratollah Najafi; Rashed Ahmadinezhad; Naser Aliasgharzad; Shahin Oustan
Abstract
Introduction: Chemical fertilizers can supply all the nutrients required by plants, but their high consumptions cause environmental pollution and increased agricultural production costs. Organic fertilizers can improve the biological, physical, and chemical properties of soil and improve soil fertility ...
Read More
Introduction: Chemical fertilizers can supply all the nutrients required by plants, but their high consumptions cause environmental pollution and increased agricultural production costs. Organic fertilizers can improve the biological, physical, and chemical properties of soil and improve soil fertility and productivity. However, these fertilizers alone cannot provide all the requirements of plants for different nutrients. In addition, these fertilizers are not sufficiently available to farmers everywhere. So, in order to increase effectiveness of organic and chemical fertilizers, to decrease environmental pollutions and to achieve sustainable agriculture, integrated application of organic and chemical fertilizers is recommended. Nitrogen (N), phosphorus (P) and potassium (K) are essential elements for plant nutrition and growth. Wheat as a strategic crop is the most important cereal and plays a very important role in human and animal nutrition and health. The deficiencies of N, P and K in the most agricultural soils often reduce the growth and yield of wheat. Therefore, the appropriate concentrations of these nutrients in wheat seed, leaf and stem are important not only for the optimum growth of the wheat plant and its quality improvement but also for the health of humans and animals.
Materials and Methods: This research work was carried out to study the effects of combining farmyard manure (FYM), municipal solid waste compost (MSWC) and municipal sewage sludge compost (MSSC) with different levels of urea on seed, leaf and stem yields of wheat (Triticum aestivum L.) cultivar Alvand and concentrations of N, P and K in seed, leaf and stem in a randomized complete blocks design with 15 treatments and three replications under field conditions at Khalatposhan Agricultural Research Station, University of Tabriz, Tabriz, Iran. The treatments included were: 1) control (without fertilizers), 2) 150 kg urea/ha, 3) 300 kg urea/ha, 4) 30 ton MSWC/ha, 5) 30 ton MSWC/ha + 150 kg urea/ha, 6) 60 ton MSWC/ha, 7) 60 ton MSWC/ha + 150 kg urea/ha, 8) 30 ton MSSC/ha, 9) 30 ton MSSC/ha + 150 kg urea/ha, 10) 60 ton MSSC/ha, 11) 60 ton MSSC/ha + 150 kg urea/ha, 12) 30 ton FYM/ha, 13) 30 ton FYM/ha + 150 kg urea/ha, 14) 60 ton FYM/ha, 15) 60 ton FYM/ha + 150 kg urea/ha. The size of each plot was 2.0m × 1.9m. At the end of growth period, the plants were harvested and different sections of wheat plant (seed, leaf and stem) were separated and the yield of each section was determined. The concentration of N in seed, leaf and stem were then measured by Kjeldahl method. After dry ashing of the seed, leaf and stem samples, the concentrations of P and K in their extracts were measured by spectrophotometer and flame photometer instruments, respectively.
Results and Discussion: The results showed that application of 300 kg urea/ha increased the wheat grain yield and concentrations of N, P and K in seed, leaf and stem but it decreased the stem yield. Application of 150 kg urea/ha had no significant effect on the leaf yield but its integration with 60 ton MSWC/ha significantly increased the leaf yield of wheat. The combining of 150 kg urea with 30 and 60 ton FYM, MSWC and MSSC per hectare increased yields of wheat stem and seed and their N and P concentrations as compared with the control and application of solely organic fertilizers. The use of FYM, MSWC and MSSC significantly increased the wheat grain yield and concentrations of N, P and K in seed, leaf and stem relative to the control but their effects on yields of leaf and stem depended on the type and rate of organic fertilizer. The highest yields of grain, stem and leaf and the highest concentrations of N, P and K in wheat grain, stem and leaf were observed under combined application of 150 kg urea and 60 ton FYM, MSWC and MSSC per hectare. The minimum yields of seed, leaf and stem and the minimum concentrations of N, P and K in different organs of wheat plant were observed in the control treatment. The average wheat yield component was in the order of seed > stem > leaf. The mean concentrations of N, P and K in different sections of wheat were in the order of seed > leaf > stem, seed > leaf > stem and stem > leaf > seed, respectively. The grain yield of wheat had positive and significant correlations (p<0.01) with concentrations of N, P and K in different organs of wheat, which indicates the role of N, P and K nutrition of wheat plant in increasing its seed yield.
Conclusions: The wheat seed had higher concentrations of N and P and lower concentration of K compared to leaf and stem. In general, in order to decrease nitrogen fertilizers use, enhance N, P and K nutrition of wheat plant, improve wheat seed quality, decline environmental pollution and increase wheat yield, application of 150 kg urea and 60 ton manure per hectare is recommended. However, if there is not enough manure, 150 kg urea and 60 ton municipal solid waste compost or municipal sewage sludge compost per hectare can be applied at similar conditions.
majid forouhar; Reza Khorassani; Amir Fotovat; Hossein Shariatmadari; Kazem Khavazi
Abstract
Introduction: Global warming is strongly linked to the increase in greenhouse gas emissions to the atmosphere. One of the most efficient ways to reduce the amount of atmospheric CO2 is to produce a lot of biomass and convert the biomass into a biochar. Biochar is an organic carbon-rich solid that can ...
Read More
Introduction: Global warming is strongly linked to the increase in greenhouse gas emissions to the atmosphere. One of the most efficient ways to reduce the amount of atmospheric CO2 is to produce a lot of biomass and convert the biomass into a biochar. Biochar is an organic carbon-rich solid that can be obtained from pyrolysis of various organic materials. In other words, biochar can be produced via thermal degradation of many organic materials such as vegetation biomass, animal waste, sewage sludge, etc. in absence or lack of oxygen. Biochar is more resistant to microbial degradation than its feedstock and has a mean resistance time of several decades. In connection with the use of biochar, the most researches have been done in non-fertile and highly weathered soils. The most significant effects of biochar application, have been also observed in strongly acidic soils. In many arid and semi-arid regions of the world, including Iran, the soil organic matter content is low. The lack of organic resources and their instability in the soil are considered as some of the most important challenges in improving soil fertility and plant growth and yield. To improve soil fertility by using insufficient existing organic resources, stabilizing organic matter by converting it into the biochar can be a fundamental strategy. If this strategy is applied in our country with calcareous soils, it is necessary to study the effects of different biochars on calcareous soils from different aspects .In this regard, in the present study, the effect of three types of biochar in a calcareous soil has been investigated in comparison with their feedstock.
Materials and Methods: The effects of three types of biochar and their feedstock in a calcareous soil were investigated in a 6-months period of incubation. A completely randomized design in the form of split plot experiment, was carried out. The main plots were consisted of Control, Municipal Waste Compost (MWC) and its biochar (BMWC), Sewage Sludge (SS) and its biochar (BSS) and Cow Manure (CM) and its biochar (BCW). The sub plots consisted of five sampling times as 10, 30, 60, 120 and 180 days after the beginning of incubation. Application rate of each treatment per kilogram of soil was calculated based on having the same weight of organic carbon content. So that all treatments contained 2.2 grams of organic carbon. After mixing the treatment with soil and adjusting the humidity to the moisture content of the field capacity (FC), they were transferred to the cans (with 3 holes embedded on their doors) and kept at 25°C in the incubator. During the 6-month incubation period, soil moisture was set at FC levels at intervals of two to three days. Sub samples were taken at five times. After air drying the sub samples, the chemical parameters such as EC of 1:2.5 extract, pH of 1:2.5 suspension, available phosphorus (extracted with sodium bicarbonate 0.5N) and available potassium (extracted with ammonium acetate 1N) were measured. After data collection, statistical analysis was performed using SAS software.
Results and Discussion: The soil texture was sandy loam with 21% of clay, 7% of silt and 72% of sand. Soil CaCO3 content and soil organic carbon content was 16% and 0.23% respectively. Available forms of potassium and phosphorous in soil were 76 and 6.3 mg kg-1, respectively. According to the results, under the influence of each treatment, the variation of soil available P, showed a significant increasing trend with the time. Changes in available potassium and soil pH were not significant over the time. Variation of soil salinity with time although showed an increasing trend but was not significant. Comparison of the effects of treatments showed that both biochars and their feedstock could significantly increase the available phosphorus and potassium in soil. In this regard, the effect of biochars was more pronounced than their feedstock. Among the feedstock, ranking for enhancing effect on available P, was SS > CM > MWC and among the biochars, it was BCM > BSS > BMWC. Ranking for enhancing effect on available K, was CM > MWC > SS and BCM > BMWC > BSS among the feedstock and biochars respectively. The increase in available phosphorus and potassium due to the use of biochars were much higher than that of total phosphorus and total potassium added by biochars. The soil pH decreased as a result of the application of each treatment compared to control. In this regard, the significant difference between biochars and their feedstock were not seen. Probable presence of some amounts of pyrogenic carbon with biochars can be one of the reasons for soil pH reduction. Electrical conductivity of 1:2.5 extract of soil was increased by all treatments compared to the control. Except for BSS, two other biochars significantly increased soil salinity more than their feedstock. This increasing effect on soil salinity can be partially due to the existence of some amount of ash accompanied with biochars.
Conclusions: Application of biochars derived from cow manure, sewage sludge or municipal waste compost in this experimental conditions, led to a significant increase in the amount of available phosphorus and potassium in soil compared to control and their feedstock. Therefore, the use of these biochars can have a high potential for reducing the consumption of some chemical fertilizers. From this point of view, the order of the superiority of the coal was as follows: biochar of cow manure > biochar of municipal waste compost> biochar of sewage sludge. The conversion of any of these feedstock to biochar did not have an effect on their potential for soil pH changes. Except for biochar of sewage sludge, in two other biochar, the potential for increasing soil salinity was higher than the feedstock. Considering that the durability of biochar in soil is much higher than that of its feedstock, it is possible to use suitable biochars such as those examined in this study as a great potential for the sustainable improvement of soil fertility and for reducing the use of chemical fertilizers in our country's agriculture. This requires extensive field researches for other soil properties in different soil and water conditions, with different kinds of biochars and crops.
Hanye Jafari Vafa; Fayez Raiesi; Alireza Hosseinpur; Zohre Karimi
Abstract
Introduction: Earthworms are among the most important organisms in soil and their activities can be an indicator of soil quality. These organisms may be influenced by organic wastes application such as sewage sludge and subsequently affect soil quality. One of the quick and easy methods for soil quality ...
Read More
Introduction: Earthworms are among the most important organisms in soil and their activities can be an indicator of soil quality. These organisms may be influenced by organic wastes application such as sewage sludge and subsequently affect soil quality. One of the quick and easy methods for soil quality monitoring is the use of biological indicators such as microbial activity. It is due to their quick response to changes in the environment. The purpose of this study was to evaluate the effect of earthworms on nitrification rate and arginine ammonification as microbial activity in a calcareous soil amended with urban sewage sludge.
Materials and Methods: The studied soil was sampled from Shahrekord University land and sewage sludge belonged to the refinery sludge ponds of shahrekord. Based on dry weight, this organic waste had carbon and nitrogen, approximately 67 and 110 times more than tested soil, respectively. The organic waste in terms of quality and heavy metal concentrations was in class A. Experimental treatments were sewage sludge (without and with 1.5% sewage sludge) and earthworm (no earthworm, Eiseniafoetida from epigeic group, Allolobophracaliginosa from endogeic group and a mixture of the two species) as 2×4 full factorial experiment arranged in a completely randomized design with three replications. After applying sewage sludge, the pots were irrigated three months to achieve a balance in the soil. An adult earthworm per kg of soil was added and in the mixed treatments comparison species were 1:1. To prevent the exit of earthworms, the pots was closed with a thin lace. At the end of the experiment, soil was completely mixed. Part of it was stored in the refrigerator to measure the microbiological parameters. Chemical properties were measured by the air-dried soil. The effectiveness of a factor in the observed changes is shown by partial effect size (Tabachnick and Fidell 2012). So, partial effect size (Eta2p) for each source of variation (SS, earthworm and SS×earthworm) was calculated.
Results Discussion: According to Eta2p, the role of sewage sludge application to increase total nitrogen was almost twice the earthworm and had a greater effect on the property. Because of low concentrations of heavy metals and high nutrient in sewage sludge, it increased nitrification rate and arginine ammonification by 16.7 and 62.5 percent, respectively. Considering that the indices represent microbial biomass activity, so we can say sewage sludge application increased theri activities. Sewage sludge application increased total nitrogen, because provided the substrate for heterotrophic bacteria. Consequently, ammonium production improved and stimulated activity of Nitrosomonas and Nitrobacter. There was a positive and significant correlation between total nitrogen, arginine ammonification and nitrification rate, that confirmed the occurrence of this process. Earthworm inoculation affected these two indicators (p
A. Falahati Marvast; alireza hosseinpuor; Seyed Hassan Tabatabaei
Abstract
The objective of this study was to evaluate the effect of soil salinity on the availability and uptake of cadmium(Cd), lead(Pb), nickel(Ni), zinc(Zn) and copper(Cu) in a soil treated with municipal sewage sludge (MSS). Soil was salinized (2, 4, 8 and 12 dSm-1 soil paste extract) with NaCl + CaCl2 (1:1ratio), ...
Read More
The objective of this study was to evaluate the effect of soil salinity on the availability and uptake of cadmium(Cd), lead(Pb), nickel(Ni), zinc(Zn) and copper(Cu) in a soil treated with municipal sewage sludge (MSS). Soil was salinized (2, 4, 8 and 12 dSm-1 soil paste extract) with NaCl + CaCl2 (1:1ratio), and incubated at soil field capacity (FC) for 1 month. The soil was treated with a 1.5 percent of MSS and incubated again at FC for 1 month. Before planting,soluble and DTPA-TEA extractable of heavy metals and soluble Chloride(Cl-) were determined. Then barley seeds were planted and, plants were harvested 10 weeks after germination. The plant indices (dry weight, heavy metal concentration and heavy metal uptake) were measured. The results showed that all salinity levels significantly increased soluble and availability of Cd, Pb, Ni, Zn and Cu. Soil salinity had a significant effect on concentrations and absorption of Cd and Pb in plant (P
H. Emami; A.R. Astaraei; A. Fotovat
Abstract
Soil quality is important for evaluating the soil fertility and physical condition. Soil physical and chemical indicators should be regarded for determining the soil quality. This research was conducted to study the effect of organic matter on quantitative value of soil quality. Three level (15, 30, ...
Read More
Soil quality is important for evaluating the soil fertility and physical condition. Soil physical and chemical indicators should be regarded for determining the soil quality. This research was conducted to study the effect of organic matter on quantitative value of soil quality. Three level (15, 30, and 60 ton/ha) of different organic compounds including municipal waste compost, sewage sludge, cattle manure, and wheat straw to gether with control treatment in three replications were applied into loamy soil. The treated soils were kept for 6 months at 70% of field capacity moisture in greenhouse condition. Then soil quality determined based on non-linear score function by using of 14 physical and chemical indicators. The results showed that the score of control treatment was 52.7, which it belong to class 4, i.e. low quality. Addition of different organic matter into studied soil led to improve soil quality score and soil quality class was increased one to 2 degrees. Among the studied treatments, the highest score of soil quality was obtained in 60 ton/ha sewage sludge and 30 and 60 ton/ha compost. Also, addition the other organic treatments cause to increase the quantitative soil quality score in relation to control, and soil quality class increased one degree. Among the studied indicators, iron (Fe), Manganese (Mn), zinc (Zn) micro-nutrients, aeration porosity (AC), and mean weight diameter of aggregates (MWD) were the important limiting indictors in degrading the soil quality in control treatment, and applying the compost and sewage sludge increased their scores.
alireza hosseinpuor; H.R. Motaghian
Abstract
The amount of available micronutrients such as zinc (Zn) is a primary concern in treated soils with sewage sludge. This study was performed to evaluate Zn availability (DTPA-TEA, Mehlich 1 and Mehlich 3) and its fractionation in soils before and after treated with sewage sludge (1% w/w) and after wheat ...
Read More
The amount of available micronutrients such as zinc (Zn) is a primary concern in treated soils with sewage sludge. This study was performed to evaluate Zn availability (DTPA-TEA, Mehlich 1 and Mehlich 3) and its fractionation in soils before and after treated with sewage sludge (1% w/w) and after wheat plantation in greenhouse conditions. The results of this study showed that mean of Zn extracted by using chemical extractants after sewage sludge application increased significant (P0.05). The results of fractionation showed that residual Zn, exchangeable Zn, Zn associated with organic matter, Zn associated with iron-manganese oxides, and Zn associated with carbonates increased 11, 26, 94, 172, and 279% respectively. The results of mean comparison showed that different between mean of Zn fractions (except Zn associated with iron-manganese oxides) before and after planting was significant (P
H.R. Motaghian; A. Hosseinpour
Abstract
Sewage sludge uses as a low coast fertilizer to rectify deficit of elements such as zinc (Zn). A suitable extractant for estimation of bean-available Zn in calcareous soils amended with sewage sludge has not yet been introduced. The aim of this research was to assess several chemical extractants for ...
Read More
Sewage sludge uses as a low coast fertilizer to rectify deficit of elements such as zinc (Zn). A suitable extractant for estimation of bean-available Zn in calcareous soils amended with sewage sludge has not yet been introduced. The aim of this research was to assess several chemical extractants for the estimate of available Zn in sewage sludge-amended calcareous soils. For amended soils, 1% (w/w) of sewage sludge was added to 10 calcareous soils, and the soils (amended and un-amended) were incubated at field capacity for 30 days. At the end of incubation, soils were air-dried and available Zn was determined using 7 chemical extractants (DTPA-TEA, AB-DTPA, Mehlich 1, Mehlich 2, Mehlich 3, 0.1 N HCl and 0.01 M CaCl2). Zinc concentration in shoots, Zn uptake, and shoot dry weight of bean were determined in a pot experiment in amended and un-amended soils. The results show that Mehlich 3 and Mehlich 1 extractants extracted the highest and the lowest concentrations of Zn in both amended and un-amended soils, respectively. Furthermore, all three studied indices and Zn extracted by using different methods increased in amended soils. In addition, results indicated that significant correlations were found between extracted Zn using AB-DTPA, DTPA-TEA and Mehlich 3 and plant indices in un-amended soils. On the contrary, in sewage sludge-amended soils only the correlation between extracted Zn using DTPA-TEA and Mehlich 1 with Zn uptake and shoot dry weight and Mehlich 2 with Zn concentration was significant. The results of this study showed that DTPA-TEA could estimate bean-available Zn in the sewage sludge-amended and –un-amended calcareous soils.
A. Abtahi; M. Hoodaji; M. Afyuni
Abstract
The objectives of this research were to study the effect of three kinds of biosolids applications such as urban compost, sewage sludge, cow manure and chemical fertilizers (sulphates of Zn, Fe) concentration on soil and corn plant. Two calcareous soils having different textures (sandy loam and clay loam) ...
Read More
The objectives of this research were to study the effect of three kinds of biosolids applications such as urban compost, sewage sludge, cow manure and chemical fertilizers (sulphates of Zn, Fe) concentration on soil and corn plant. Two calcareous soils having different textures (sandy loam and clay loam) were used in order to study the uptake of the above zinc and iron by corn. This study was carried out in pots in a greenhouse using a factorial experiment design which was block completely randomized and each treatment was replicated three times. The levels of biosolids used were 0, 25, 50 Mg ha-1 and chemical fertilizers applied were as (Zn and Fe) sulphates. Seventy five days after corn seeds were sown; young plants at 4 to 5 leaf stage were harvested and made ready for chemical analyses. Results of the soil analysis showed that in sewage sludge treatment (50 Mg ha-1) the CEC, and the DTPA extractable (Zn and Fe) increased significantly compared to control and other treatments in soils. Cow manure treatment (50 Mg ha-1) had a significant effect on OM, and EC. Result of the plant analysis showed that in the sewage sludge treatment the concentration of Zn in the roots, and the concentrations of Zn, Fe in the shoots increased significantly. In general, corn yields increased significantly in the sewage sludge treatment compared to the other treatments in clay loam soils. Generally, the results of this study showed that biosolid application including sewage sludge increased concentration of micronutrients (Zn and Fe) in soil and corn plant.
H. R. Boostani; abdolmajid ronaghi
Abstract
Sewage sludge (SS) as a source of required plant nutrients has been utilized in many countries for crops production. for investigation of SS application affect in compared to chemical fertilizer treatment (F), on dry matter yield (DMY) and concentration of some macro and micro nutrient in corn, a greenhouse ...
Read More
Sewage sludge (SS) as a source of required plant nutrients has been utilized in many countries for crops production. for investigation of SS application affect in compared to chemical fertilizer treatment (F), on dry matter yield (DMY) and concentration of some macro and micro nutrient in corn, a greenhouse experiment (5 × 3 factorial) arranged in a completely randomized design with three replicates was conducted. The first factor included SS levels (0, 10, 20, 40 and 80 gr kg-1 soil) and the second factor was soil textural classes (clay loam, sandy loam and sandy). A chemical fertilizer treatment was also used to compare its affect with that of SS application levels on growth and chemical composition of corn. For comparison of applied SS levels (one factor) with chemical fertilizer treatment in each soil textural classes was used from a completely randomized design with six treatment and three replicates. The results indicated that addition of SS significantly increased DMY of corn in all textures. Application of SS significantly increased N, P, Fe, Zn, Cu and Mn concentration in corn aerial parts and nutrients deficiencies symptoms disappeared. Nutrients concentrations in corn plants did not reach to toxic levels even at high rates of SS application and concentration of Cd and Pb were negligible and not detectable in shoot corn. Based on nutrient deficiency in calcareous soils especially Zn and Fe, application of SS for contrasting with shortage of these elements can be effective way to eliminate these nutrients shortage. In general, application of SS was superior to chemical fertilizer treatment in increasing concentration of nutrients and DMY of corn. Prior to any SS recommendations the results of this experiment needs to be verified under field conditions.
H. Dehghan Manshadi; M.A. Bahmanyar; A. Lakzian; S. Salek Gilani
Abstract
Sewage sludge with having the organic matter is considered as a source of micro and macro elements. In order to investigate the effect of different levels and period of application of sewage sludge (SS) on organic matter, respiration, and acid and alkaline phosphatase activity, factorial design were ...
Read More
Sewage sludge with having the organic matter is considered as a source of micro and macro elements. In order to investigate the effect of different levels and period of application of sewage sludge (SS) on organic matter, respiration, and acid and alkaline phosphatase activity, factorial design were studied, in 3 replications. Sewage sludge at five levels, (20 and 40 tons of sewage sludge, 20 and 40 tons of sewage sludge + 50 percent of chemical fertilizers (CF) per hectare, without taking sewage sludge) and period of application three levels (two, three and four years) was considered. The results showed that application of SS at all levels, increased soil organic carbon (O.C) and soil microbial respiration and enzyme activity were compared with the controls (p
N. Najafi; S. Mardomi; Sh. Oustan
Abstract
In a greenhouse experiment, the effects of waterlogging, sewage sludge and manure on the uptake and concentrations of P, K, Ca, Mg and Na in root and shoot of sunflower (Helianthus annuus L.) were investigated. A factorial experiment based on completely randomized design with three replications including ...
Read More
In a greenhouse experiment, the effects of waterlogging, sewage sludge and manure on the uptake and concentrations of P, K, Ca, Mg and Na in root and shoot of sunflower (Helianthus annuus L.) were investigated. A factorial experiment based on completely randomized design with three replications including duration of waterlogging at five levels (0, 2, 4, 8, 22 days), source of organic fertilizer at two levels (manure and sewage sludge) and each at three levels (0, 15, 30 grams per kg of soil) was conducted. The results showed that by increasing the duration of soil waterlogging, the P and K uptake and concentration in shoot and root, the concentration of Ca and Na in root, the Mg concentration in shoot, the uptake of Ca and Mg in root and the uptake and concentration of Na in shoot increased but P uptake and concentration in root and K uptake in root and shoot decreased again. By increasing the duration of soil waterlogging, the uptake and concentration of Ca in shoot decreased but the Ca concentration in shoot increased again. The effect of soil waterlogging on the Mg uptake in shoot was not significant. By application of sewage sludge and manure and increasing their amounts, the uptake and concentration of P in shoot and root, the uptake of Ca in shoot and root and the uptake and concentration of Na in shoot increased. The K uptake and concentration in shoot increased by application of manure and increasing its level while decreased by application of sewage sludge. The effect of soil waterlogging on the macronutrients and sodium uptake and concentrations in root and shoot was dependent on the source and amount of organic fertilizer and vice versa. The results demonstrated that even short periods of soil waterlogging (2 days) had considerable long-term effect on the concentrations of elements in plant. Generally, sunflower plant accumulated P, Mg and Na in root and Ca in shoot while the K concentration in root did not differ with shoot significantly.