Soil science
B. Kamali; A. Sotoodehnia; A. Mahdavi mazdeh
Abstract
Introduction Phosphorus is an essential soil nutrient that plays key roles in plant growth and development. Limited availability of P is the main constraint for crop production in many soils. Long-term phosphate fertilizers application in agricultural areas to increase the physiological efficiency ...
Read More
Introduction Phosphorus is an essential soil nutrient that plays key roles in plant growth and development. Limited availability of P is the main constraint for crop production in many soils. Long-term phosphate fertilizers application in agricultural areas to increase the physiological efficiency of crops can lead to a significant P accumulation. The process of P fixation or sorption includes precipitation and adsorption onto mineral and organic surfaces. Various factors such as clay content, organic matter, exchangeable Al, Fe, Ca content and pH soil affect P sorption capacity. In order to achieve the proper management of P fertilization, it is necessary to understand the mechanism of the sorption process and the contributing factors, as well as how to influence these factors. Qazvin plain is one of the most important agricultural plains in Iran, playing a pivotal role in maintaining national food security. Cultivating crops such as wheat, barley, alfalfa and corn in different areas of this plain is widespread. Therefore, high amounts of phosphate fertilizers are applied in this plain every year. In this study, the kinetic and equilibrium adsorption of P in a heavy textured agricultural soil sample in Qazvin plain were investigated under the influence of some different environmental parameters.Materials and MethodIn order to conduct the kinetic adsorption experiment, one gram soil samples were placed in the shaker in contact with 25 ml of 0.01 M CaCl2 solution containing 20 mg P l-1. Time intervals were 0.17, 0.5, 1, 2, 4, 8, 16, 24, 48 and 72 hours. The effects of temperature (12, 25, 38 °C), salinity (0, 8.96, 17.02, 32.09, 46.25 dS m-1), pH (2.5, 3.5, 5.36, 7.5, 9.5, 11.5) and the type of background solution (distilled water and 0.01 M CaCl2 solution) were also investigated on P equilibrium adsorption. In the equilibrium batch experiments, the soil samples were placed in contact with the background solutions containing 0, 15, 20, 30, 50, 80 and 100 mg P l-1 (ratio 1:25) for 24 hours. The concentration of P in the samples was determined by a spectrophotometer after passing through the filter. The amount of P adsorption to each soil sample was then calculated based on the concentrations. The experiments were carried out in the factorial and completely randomized designs with three replications for each treatment. Using CurveExpert 1.4 software, the Langmuir and Freundlich isotherms, as well as the pseudo-first-order, pseudo-second-order, the Elovich and Intra-particle diffusion models were fitted to the obtained laboratory data. Statistical analysis of experimental data was done based on the Tukey test at 5% level using Minitab software. The thermodynamics of P adsorption was also determined by examining parameters of the Gibbs free energy, enthalpy and entropy changes.Results and Discussion According to the results, the highest amount of adsorption occurred in the first 8 hours of soil contact with P solution, and approximate time of achieving the equilibrium conditions was 24 to 48 hours. The process of P adsorption onto soil particles consisted of two fast and slow stages until the equilibrium was reached. The kinetic adsorption properties of the studied soil was best described by the Elovich equation (r2=0.964). The Freundlich model showed better fit than the Langmuir equation to the equilibrium data. The effects of all four parameters of temperature, salinity, pH and background electrolyte solution on the P equilibrium adsorption were significant. By changing the temperature from 25 to 38 °C, qm (Langmuir coefficient) was 2.1 times. It was also 7.5 times under the conditions of using CaCl2 solution instead of distilled water. Increasing pH caused an increase in adsorption rate and the highest amount of adsorption changes occurred in the pH varying between 5.36 and 7.5. However, the highest and lowest P adsorption percentage with the values of 45 and 37% were related to zero and 46.25 dS m-1 salinity, respectively. The results also indicated that the sorption process was endothermic and spontaneous.Conclusion Adjusting and controlling the studied parameters in the soil during the application of phosphate fertilizers can optimize P use efficiency and increase crop yield in the studied area. Based on the results of the present study, it is recommended to add sulfur, ammonium sulfate, ammonium nitrate fertilizers and organic compounds to the studied calcareous soil with high pH and low salinity. Application of this method can reduce soil pH, which leads to a decreased P sorption onto the soil particles and an enhanced P availability for plants. Adjusting the P fertilization time with the crop growth and uptake is also recommended due to the high adsorption of P onto the soil particles in a short period of time.
R. Khodadadi; Reza Ghorbani nasrabadi; M. Olamaee; S.A. Movahedi Naini
Abstract
Introduction: Worldwide studies have shown that inappropriate land uses over the past 45 years have resulted in salinization of 6% of the world's land. Salinity has negative effects on soil physicochemical properties and microbial activities. The imbalance in nutrient uptake, ion toxicity and ...
Read More
Introduction: Worldwide studies have shown that inappropriate land uses over the past 45 years have resulted in salinization of 6% of the world's land. Salinity has negative effects on soil physicochemical properties and microbial activities. The imbalance in nutrient uptake, ion toxicity and decreasing water consumption due to high osmotic pressure are resulted from high accumulation of solutes in soil solution. One of the strategies to mitigate soil salinity is the inoculation of crops with different types of beneficial soil bacteria and fungi. Plant growth promoting bacteria (PGPB) are a diverse group of bacteria capable of promoting growth and yield of many crops. The most important growth promoting mechanisms of bacteria are the ability to produce plant hormones, non-symbiotic nitrogen fixation, solubilization of insoluble phosphate and potassium, biocontrol of plants pathogens through producing hydrogen cyanide and siderophore production. Plant inoculation with growth promoting bacteria causes an increase in several indices such as shoot fresh and dry weight, root dry weight and volume as well as chlorophyll content. The synergetic effect of Azotobacter and Azospirillum on the plant has been documented by increasing the absorption of nutrients, production of hormones that stimulate plant growth such as auxin, and influencing the root morphology. Due to the wide area of saline soils, appropriate methods to reduce the negative effects of salinity are of great significance. Given the importance of using bacteria adapted with climatic conditions and soil ecosystems in each region, as well as the efficiency of the combined application of growth promoting bacteria, this study was conducted to investigate the effect of growth promoting bacteria as a single and combined application at two levels of salinity calculated based on the threshold of barley yield reduction (Karoon cultivar) and 50 % reduction in barley yield.
Materials and Methods: In order to record the Azotobacter isolates, 15 soil samples were collected from salt affected lands of Golestan province. Thirty two Azotobacter isolates were isolated by physiological and biochemical tests and cyst production in old culture. Then, their ability to grow in different concentrations of salinity, drought stress tolerance, polysaccharide production, auxin production, phosphorus and potassium solubilization, hydrogen cyanide synthesis and biological fixation of molecular nitrogen were investigated. Based on physiological and growth stimulation tests, Az13 isolate was selected as the superior isolate of Azotobacter for greenhouse test. Azospirillum superior isolate was then prepared from the microbial bank of Soil Science Department, Gorgan University of Agricultural Sciences and Natural Resources. A soil with 16 dS/m salinity was selected to determine the effects of experimental treatments at two threshold salinity levels of yield reduction and 50 % reduction of barley yield. Then, soil salinity was reduced to 8 dS/m (yield reduction threshold) by leaching. After reaching to the desired salinity, the soil was removed from the pots and air dried. The sample was sifted through a 2 - mm sieve and again transferred to the pots. The barley seeds, Karoon cultivar, were used. To prepare the inoculum, firstly the bacterial isolates were grown in the pre-culture nutrient broth medium, and then incubated at 120 rpm in a shaking incubator at 28°C for 48 hours. Afterwards, each seed was inoculated with one milliliter of the bacterial inoculant with a population of 109 CFU/ml. This experiment was conducted as factorial in a completely randomized design with three replications in the greenhouse at Gorgan University of Agricultural Sciences and Natural Resources. The treatments included four levels of bacteria (without inoculation, Azotobacter inoculation, Azospirillum inoculation, combined inoculation of Azotobacter and Azospirillum) and two levels of salinity (8 and 16 dS/m). After 70 days (late vegetative growth period), some growth and physiological indices and concentration of nutrients uptake were measured.
Results and Discussion: The results showed that salinity stress had a significant (p < 0.01) negative effect on growth and physiological traits and nutrient uptake of the plant. The combined application of Azotobacter and Azospirillum bacteria showed a positive significant influence (p < 0.01) on growth, dry weight, and root dry weight in the plant under salinity stress. The combined application of bacteria increased the chlorophyll a, b and a + b content at a salinity level of 16 dS/m by 136.49, 117.86 and 127.97 %, respectively. The combined application of bacteria resulted in a 65.39 and 55.94 % increase in proline amino acid content at salinity levels of 8 and 16 dS/m, respectively. The results revealed that nitrogen, phosphorus and potassium levels increased by 81.97, 80 and 66.67%, respectively, at 16 dS/m salinity level in combined application of both bacteria. Sodium ion accumulation in all bacterial treatments decreased in both salinity levels compared to control treatment and the highest reduction was observed in combined bacterial inoculation. These findings underline the positive effect of bacterial inoculation, particularly their combined application, on the growth and nutrients uptake of barley under salt stress.
Conclusion: Our results indicate that increasing salinity level significantly decreased shoot dry weight, root dry weight, plant height, chlorophyll content and nutrient concentrations of barley. Inoculation of salt-resistant bacteria, including Azotobacter and Azospirillum, reduced the adverse effects of salinity on growth and physiological traits, which was more pronounced in Azotobacter than Azospirillum. The combined application of Azotobacter and Azospirillum had a significant effect on root dry weight, plant height, chlorophyll content, increasing nutrient concentration efficiency (nitrogen, phosphorus, and potassium) and decreased sodium concentration at both salinity levels (8 and 16 dS/m) compared with the individually inoculated bacteria. Hence, the application of Azotobacter and Azospirillum isolates is an appropriate method for pot experiments with saline soils. To apply these results, field experiments in saline soils must be carried out to evaluate the effect of these bacterial isolates on the crop growth, yield and physiological characteristics.
elham sadeghi; fayez raiesi; Alireza Hosseinpour
Abstract
Introduction: Soil, as an important component of terrestrial ecosystems, plant growth media, and a habitat of diverse living organisms commonly encounters a variety of abiotic stresses. Soil microorganisms play an important role in maintaining soil quality and functioning, since they are responsible ...
Read More
Introduction: Soil, as an important component of terrestrial ecosystems, plant growth media, and a habitat of diverse living organisms commonly encounters a variety of abiotic stresses. Soil microorganisms play an important role in maintaining soil quality and functioning, since they are responsible for the decomposition of dead organic material, nutrient cycling and degradation of hazardous organic pollutants. Metal toxicity and salinity are the major abiotic stresses affecting soil microbial activity and community structure in many areas of the world, in particular arid regions. Anthropogenic activities have increased the concentration of heavy metals and soluble salts in soil, resulting in a major constrain for soil microbial performance and functions. Furthermore, soil microbial activity and biochemical processes are often limited by substrate availability in arid areas due to the low organic inputs. Although the individual effects of salinity and metal toxicity stresses on soil biological activity are generally well-known, their combined effects on microbial growth, population and functions are largely uncertain. The main aim of this study was to investigate the interactive effects of salinity and cadmium (Cd) Pollution on microbial respiration and biomass in a calcareous soil treated with plant residue. It was hypothesized that salinity would increase mobility and availability of Cd with subsequent reductions in microbial activity and biomass, and that addition of plant residue would modify these salinity effects.
Materials and Methods: This study was conducted under controlled laboratory conditions at Shahrekord University. A factorial experiment with two levels of cadmium (0 and 30 mg kg-1), three levels of salinity (1.35, 7.5 and 10 dS m-1) and two levels of plant residue (with and without alfalfa residue) was conducted using a completely randomized design with four replications. Using cadmium chloride salt, the soil was contaminated, and subsequently amended with alfalfa residue (1%, w/w). After thorough mixing of soil and plant residue, salinity treatments were applied using NaCl salt. To reactivate the microbial population and for the aging effect, soil moisture was set at 70% of field capacity, and containers were pre-incubated at room temperature for 4 weeks. The samples were then incubated at 25±1 oC for 98 days. Soil carbon (C) mineralization (microbial respiration) was measured weekly, and available Cd and microbial biomass C were measured at monthly intervals. In this experiment, the Bliss independence model was used to determine the type and nature of the interaction between salinity and pollution (synergistic and antagonistic).
Results and Discussion: The results showed that NaCl salinity increased the concentration of soil available Cd in both polluted and unpolluted soils over the experimental period, and the increases were greater at high than low salinity levels. This effect of salinity was less pronounced in residue-amended and unamended soils. In general, a strong synergistic effect of both stresses upon Cd availability was observed in residue-unamended soils while this effect was mostly antagonistic in residue-amended soils. This indicates that addition of plant residue to enhance soil organic matter may indirectly repress or lower salinity effect on Cd toxicity. Soil salinity decreased microbial biomass C and respiration with subsequent increases in specific respiratory quotient due to the increases in Cd solubility and availability. However, the changes in microbial properties were much lower in residue-amended and unamended soils. Addition of plant residue decreased the negative effects of both the individual and combined salinity and Cd pollution on microbial biomass and respiration. The interactive effect of these two stresses was mainly synergistic in residue-treated soils while it was antagonistic in residue-untreated soils. Overall, a strong synergistic effect occurred when both stresses were combined in the absence of plant residue while this effect was antagonistic in the presence of plant residue.
Conclusion: This study provided evidence that salinity could synergistically increase the mobility, bio-availability, and toxicity of Cd in Cd-polluted soils with C limitation. This was reflected by synergistic reductions in soil microbial biomass and respiration. However, addition of plant residue to increase soil organic matter lowered this effect of salinity, resulting in the antagonistic effects of salinity and pollution on soil microbial biomass and respiration. The reason for increase in the microbial activity in soils treated with plant residue was the increase of available substrate. As a result, using the plant residue increased the stimulatory effect of microbial activity. These findings point to the importance of providing adequate organic residues to enhance soil microbial performance and agricultural sustainability in polluted soils under salinity stress. However, further information on responses of microbial indicators to the joint effect of salinity and Cd toxicity is required.
Materials and Methods: This study was conducted under controlled laboratory conditions at Shahrekord University. A factorial experiment with two levels of cadmium (0 and 30 mg kg-1), three levels of salinity (1.35, 7.5 and 10 dS m-1) and two levels of plant residue (with and without alfalfa residue) was conducted using a completely randomized design with four replications. Using cadmium chloride salt, the soil was contaminated, and subsequently amended with alfalfa residue (1%, w/w). After thorough mixing of soil and plant residue, salinity treatments were applied using NaCl salt. To reactivate the microbial population and for the aging effect, soil moisture was set at 70% of field capacity, and containers were pre-incubated at room temperature for 4 weeks. Next, the samples were incubated at 25±1 oC for 98 days. Soil C mineralization (microbial respiration) was measured weekly, and available Cd and microbial biomass carbon were measured at monthly intervals. In this experiment, the Bliss independence model was used to determine the type and nature of the interaction between salinity and pollution (synergistic and antagonistic).
Results and Discussion: The results showed that NaCl salinity increased the concentration of soil available Cd in both polluted and unpolluted soils over the experimental period, and the increases were greater at high than low salinity levels. This effect of salinity was less pronounced in residue-amended and unamended soils. In general, a strong synergistic effect of both stresses was observed on Cd availability in residue-unamended soils while this effect was mostly antagonistic in residue-amended soils. This indicates addition of plant residue to enhance soil organic matter may indirectly repress or lower salinity effect on Cd toxicity. Soil salinity decreased microbial biomass carbon and respiration with subsequent increases in specific respiratory quotient due to the increases in Cd solubility and availability. However, the changes in microbial properties were much lower in residue-amended and unamended soils. Addition of plant residue decreased the negative effects of both the individual and combined salinity and Cd pollution on microbial biomass and respiration. The interactive effect of these two stresses was mainly synergistic in residue-treated soils while it was antagonistic in residue-untreated soils. Overall, a strong synergistic effect occurred when both stresses were combined in the absence of plant residue while this effect was antagonistic in the presence of plant residue.
Conclusions: This study provided evidence that salinity could synergistically increase the mobility, bio-availability, and toxicity of soil Cd in Cd-polluted soils with carbon limitation. This was reflected by synergistic reductions in soil microbial biomass and respiration. However, addition of plant residue to increase soil organic matter lowered this effect of salinity, resulting in the antagonistic effects of salinity and pollution on soil microbial biomass and respiration. The reason for increase in the microbial activity in soils treated with plant residue was the increase of available substrate. As a result, using the plant residue increased the stimulatory effect of microbial activity. These findings point to the importance of providing adequate organic residues to enhance soil microbial performance and agricultural sustainability in polluted soils under salinity stress. However, further information on responses of microbial indicators to the joint effect of salinity and Cd toxicity is required.
Ali Reza Kiani; Afshin Mosavat
Abstract
Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating ...
Read More
Introduction: Lack of water and deterioration in the quality of soil and water resources are considered to be the prime cause of reduced crop yield in arid and semi-arid regions ‘More crop per drop’ by trickle irrigation, deficit irrigation, and uncommon water are the best strategies for mitigating water crises. Different irrigation management strategies are needed to increase production in different areas. In areas where sufficient water is available, a full irrigation strategy could be a suitable option, while in areas where water is limited, deficit irrigation would be an appropriate method, and finally in areas where water resources are saline, management strategies for achieving sustainable production as well as economic yields would be suitable. Maize is the third most important grain crop in the world following wheat and rice and it is the main source of nutrition for humans and animals. Because of the importance of maize in the world, increasing maize production under environmental stresses is a big challenge for agricultural scientists. Different methods of irrigation and the use of saline water that had satisfactory results for increasing agricultural production have been studied by several investigators . The main objective of this study was to establish an efficient use of limited water resources as well as to explore the possibility of replacing saline water with fresh water using different management techniques.
Materials and Methods: A field experiment was conducted over two maize cropping seasons (2012–2013) in northern Iran (Gorgan Agricultural Research Station) to compare different alternate irrigation scenarios using saline water on corn yield, salinity and soil moisture distribution in a randomized complete block design with three replications. Treatments were: T1 and T2 = 100 and 50 % of crop water requirement with non-saline water, respectively; T3 and T4 = variable and fixed full irrigation with saline and non-saline water in every other row, respectively; T5 and T6= fixed and variable deficit irrigation with non-saline water in every other rows, respectively and T7= full irrigation with saline water. To create the desired water salinity (8 dS/m), non-saline well water (1.5 dS/m) and drainage water (20–35 dS/m) were blended in different proportions. A T-tape drip irrigation system (20 m in length) was used in the field experiment.
Results and Discussion: In general, corn yield in 2013 was about 1270 kg ha-1 higher than in 2012. From the weather records it can be seen that the second year was drier than the first year. Yield analysis showed that deficit irrigation treatments (T2, T5 & T6) and also alternate salinity treatments (T3 & T4) did not significantly difference. In other words, the deficit irrigation management had no effect on yield. Corn yield in T3 and T4 with 50% of saved fresh water was just reduced to 7 and 1 % of T1, respectively. As a result, comparing treatments T3 and T4 with full irrigation have shown that treatments T3 and T4 are the best option. Comparison of moisture distribution in deficit irrigation treatments showed the highest water content in surface and deep layers was related to the treatments T6 and T2, respectively. The distribution of salinity in the soil profile for treatments T3 and T4 showed that after two years of irrigation with saline water, there is the possibility of use saline water for corn production, but drainage and leaching of soil will need to maintain sustainability.
Conclusion: Naturally, in water scarce areas that use some strategic management such as deficit irrigation or saline water use, there is available arable farmland to further develop the irrigated area, and thereby increase total production. According to the results of the two-years where there was a shortage of water to meet crop water requirement and saline water was not available, the use of deficit irrigation managements as described in this study can save fresh water resources and increase total production and farmer's income. If the region is facing a shortage of water resources and saline water is available nearby agricultural land, it is suggested to use alternate furrow irrigation with saline and non-saline water; with the crop water requirement being met by the saline water, the total output will be higher than using deficit irrigation management with non-saline water. Comparision of the distribution of moisture in deficit irrigation treatments showed that surface soil moisture was lower in the treatment of T5 because it was more lateral distribution. In the deeper layers, soil moisture of the treatment T2 was more than others, because it was the predominant infiltration. The two treatments T3 and T4 because of the combined matric and osmotic potential and the movement of water along the sides and deep percolation, resulting widely distributed in soil moisture and thus remaining lower moisture in the soil compare to full irrigation treatments. Consequently, this finding indicates that after two years of corn irrigation using saline (8 dS/m) and non-saline water in every other row (treatments T3 and T4) production can be increased, and in case of proper leaching and drainage management, agricultural sustainability will also preserve.
Masoud Noshadi; Hosein Valizadeh
Abstract
Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful ...
Read More
Introduction: Soil salinity is one of the major limitations of agriculture in the warm and dry regions. Soil sodification also damages soil structure and reduce soil permeability. Therefore, control of soil salinity and sodium is very important. Vetiver grass has unique characteristics that can be useful in phytoremediation.
Materials and Methods: This research was conducted to investigate the effects of irrigation with different salinities on vetiver grass and the effects of this plant on the control of soil salinity and soil reclamation.The experimental design was randomized complete block design. Irrigation water salinities were 0.68(blank), 2, 4, 6, 8 and 10 dS/m, respectively, which artificially were constructed using sodium chloride and calcium chloride. At first, vetiver was transplanted and then moved to the farm. The amount of soil moisture was measured by the neutron probe. Irrigation depth was applied to refill soil water deficit up to field capacity. To evaluate the soil salinity in above salinity treatments, soil was sampled in each plot from 0-30, 30-60 and 60-90 cm depths and for each layer, electrical conductivity of saturated extract (ECe), sodium, potassium and chloride concentrations was measured .To measure the sodium, potassium and chloride concentrations in the leaves and roots of vetiver plant, samples were dried in oven. The dried samples were powdered and passed through the sieve (No. 200) and they were reduced to ash in 250 ◦C. 5 ml HCl was added to one gram of the ash, and after passing through filter paper, the volume of sample was brought to 50 ml by boiled distilled water. After preparing plant samples, the sodium, potassium and chloride concentrations were measured by Flame Photometer.
Reults and discussion: The results showed that the vetiver grass was able to decrease soil salinity at different salinity levels except highest water salinity (10 dS/m) and prevented salt accumulation in the soil. However, in the salinity 10 dS/m, soil salinity was not well controlled, but soil salinity was lower than the irrigation salinity. In these water salinities, the mean ECes in 0-90 cm soil depth were increased 25.0, 60.4, 79.2, 87.5 and 215.5 percent, respectively, relative to a control treatment, which was much less than the increasing of irrigation water salinities. These increases in ECe were significant at 5% level of probability. The accumulated values of sodium in vetiver leaves showed significant difference between S0 treatment and the other treatments (S3, S4 and S5) at the 5% level of probability. The sodium contents in vetiver leaves were 22.2, 33.3, 70.4, 103.7 and 122.2% and in vetiver roots were 32.7, 66.5, 129.3, 218.2 and 281.8% higher than the control treatments (S0), respectively. Sodium contents in vetiver roots were 103.7, 121.2, 154.4, 174.1, 218.2 and 250% more than sodium contents in vetiver leaves in S0, S1, S2, S3, S4 and S5 treatments, respectively. Sodium contents were increased 14.3, 28.6, 64.3, 100.0 and 114.3 percent in vetiver leavesand 28.6, 64.3, 125.0, 214.3 and 275.0 percent in the vetiver roots , relative to the control treatment, respectively, at above salinity levels, which indicated an improvement of sodium accumulation in leaves and roots with increasing salinity levels. Chloride concentrations at irrigation water salinities S1, S2, S3, S4 and S5 treatments (2-10 dS/m) were 22.9, 35.6, 74.5, 107.2 and 121.9% in vetiver leaves and 27.02, 59.7, 118.9, 195.06 and 255.7% in vetiver roots more than control treatment, respectively. The mean values of sodium and chloride in all salinity levels in the roots were 170.3 and 164.1 percent more than the leaves, respectively.There were no significant differences in accumulated potassium in vetiver leaves and roots between different treatments, but vetiver leaves and roots absorbed and accumulated high value of potassium. The potassium contents were 4.38, 4.64, 4.18, 3.89, 3.82 and 3.68 mg/g in vetiver leaves and 3.12, 3, 3.62, 3.69, 3.84 and 3.68 mg/g in vetiver roots, in S0, S1, S2, S3, S4 and S5 treatments, respectively.
Conclusion: In general, the results showed that up to irrigation water salinity 8 dS/m, Vetiver grass had very good ability to control soil salinity and prevented the accumulation of salt in the soil, but at the salinity of 10 dS /m, soil salinity was not well controlled. However, in 10 dS /m, soil salinity was much less than water irrigation salinity.
The mean values of soil salinity in layer 3 (60-90 cm) were 0.48, 0.6, 0.77, 0.86, 0.9 and 1.5 dS/m in S0, S1, S2, S3, S4 and S5 treatments, respectively. ECes were 29.4, 70.0, 80.8, 85.7, 88.8 and 85.0 percent lower than irrigation water salinities 0.68, 2, 4, 6, 8 and 10 dS/m, , respectively. Sodium and chloride accumulated in the leaves and roots of vetiver that showed that Vetiver it is well able to absorb these elements. The accumulations of sodium and chloride in roots were170.3 and 164.1 percent more than leaves, respectively.
vahid mozafari; fariba khaleghi
Abstract
Introduction: Salinity is one of the main problems which limits crop production, especially in arid and semi-arid areas such as Iran. Iran is the most important producer of pistachio in the world. However, its performance is low in many areas. Most pistachio plantations are irrigated with saline water ...
Read More
Introduction: Salinity is one of the main problems which limits crop production, especially in arid and semi-arid areas such as Iran. Iran is the most important producer of pistachio in the world. However, its performance is low in many areas. Most pistachio plantations are irrigated with saline water and with low quality (28). On the other hand, nitrogen is a dynamic element which is a constituent of amino acids, proteins, nucleic acids and Enzymes and it has a vital role in plant physiology, growth, chlorophyll formation and production of fruit and seeds (34). Gibberellic acid is known as phytohormon which varied physiological responses in plants under stress. acid gibberellic increases the photosynthesis and growth under stress and impact on the physiology and metabolism of plant (29). Based on previous studies, production and activity of plant hormones are affected by natural factors and plant nutrient requirements and the nitrogen has an important influence on production and transmission of acid gibberellic plant shoot. Therefore, in this study the effect of acid gibberellic and nitrogen on some characteristics of physiology parameters and micronutrient pistachio seedlings (Cv. Qazvini) under saline conditions was studied.
Materials and methods: Experiment under greenhouse condition and factorial in a completely randomized design with three replications was conducted in greenhouse agriculture college, Vali-E-Asr University of Rafsanjan. Treatments consisted of three levels of salinity (0, 1000 and 2000 mg of sodium chloride per kg of soil), three levels of nitrogen (0, 75 and 150 mg per kg of ammonium nitrate source) and three acid gibberellic levels (0, 250 and 500 mg per liter). Adequate soil with little available salinity conditions was collected from the top 30-cm layer of a pistachio-culture region of Kerman province. After air drying and ground through passing a 2 mm sieve, some of the physical-chemical properties of this soil include pH (7/63), Tissue (Sandy loam), electrical conductivity (ECe) (1 dS m-1), Silt (23.1%), Clay (5.5%), Organic matter (0.5%), Olsen phosphorus (P) (5.35 mg kg-1), Ammonium acetate-extractable K (100 mg kg-1) were determined. Nitrogen treatments 3 weeks after planting, dissolved in irrigation water was added to pots. Salinity, after the establishment of the plant (5 weeks after planting), divided into two equal parts and one-week interval dissolved with irrigation water was added to the pot. as well acid gibberellic treatments, as spray after salt treatment was applied at three times and at intervals of one week.
Results and discussion: The results showed that the salinity content of carotenoid and Chlorophyll fluorescence parameters significantly reduced but with increasing acid gibberellic and nitrogen application, mentioned parameters were significantly increased, compared to controls. The ability of photosynthesis improved and increased productivity. Mozafari et al studied the pistachio, reported that with increasing salinity from zero to 150 and 300 mM NaCl, carotenoids decreased more than 16% and 22% compared to control respectively. Carotenoids play a most important role in light, protecting plants against stress condition. Salinity application increased leaf proline, but with application of 150 mg nitrogen and 500 mg per liter foliar application of acid gibberellics, this parameter increased by 55 and 26 percent, respectively. Also, combined use of these two treatments increased proline content by 79 percent compared to control. The researchers stated that the increasing gibberellin concentration caused leaf proline increased, so spraying 100 and 200 mg per liter gibberellin significantly increased leaf proline compared with the non-application of gibberellin. The results also showed with increasing salinity increased iron, manganese and zinc concentrations shoots and roots and decreased copper concentrations, but using 150 mg of nitrogen and acid gibberellic consumption concentrations of copper element increased. Hojjat nooghi and Mozafari (28) reported, the used salinity of 60 mM NaCl increased shoot Fe concentration, but by applying the same amount of salinity in the root iron concentration decreased compared with the control. Research has shown that the copper concentration in the leaves and shoot of corn planted in soil decreased with increasing salinity. Micronutrient absorption reduction such as copper in salt condition can result in greater absorption of nutrients such as sodium, magnesium and calcium. The researchers in the study reported that with increasing nitrogen in the form of nitrate and ammonium, zinc concentration in plant tissues increased along with increasing salinity and lower shoot dry weight, zinc concentration was increased in two wheat cultivars too.
Conclusion: The results of this experiment showed that under saline conditions, acid gibberellic and nitrogen applied alone or in combination improved physiology parameters and increased nutrient concentration of pistachio seedling.
M. Sarai Tabrizi; H. Babazadeh; mahdi homaee; F. Kaveh Kaveh; M. Parsinejad
Abstract
Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity ...
Read More
Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil response to salinity and to evaluate the effectiveness of available mathematical models for the yield estimation of the Basil .
Materials and Methods: The extensive experiments were conducted with 13 natural saline water treatments including 1.2, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 5, 6, 8, and 10 dSm-1. Water salinity treatments were prepared by mixing Shoor River water with fresh water. In order to quantify the salinity effect on Basil yield, seven mathematical models including Maas and Hoffman (1977), van Genuchten and Hoffman (1984), Dirksen and Augustijn (1988), and Homaee et al., (2002) were used. One of the relatively recent methods for soil water content measurements is theta probes instrument. Theta probes instrument consists of four probes with 60 mm long and 3 mm diameter, a water proof container (probe structure), and a cable that links input and output signals to the data logger display. The advantages that have been attributed to this method are high precision and direct and rapid measurements in the field and greenhouse. The range of measurements is not limited like tensiometer and is from saturation to wilting point. In this study, Theta probes instrument was calibrated by weighing method for exact irrigation scheduling. Relative transpiration was calculated using daily soil water content changes. A coarse sand layer with 2 centimeters thick was used to decrease evaporation from the surface soil of the pots. Quantity comparison of the used models was done by calculating statistical indices such as maximum error (ME), normalized root mean square error (nRMSE), modeling efficiency (EF), and coefficient of residual mass (CRM). At the end of the experiment, dry matter yield at the different treatments was measured and relative yield was calculated by dividing dry matter yield of treatments on dry matter yield at no stress treatment (control treatment). Leaching requirement in experimental treatments was calculated by Ayarset al., (2012) equation.
Results and Discussion: The results indicated that Basil threshold value based on soil salinity was 2.25
dSm-1 with the yield reduction of 7.2% per dSm-1. The mathematical model of van Genuchten and Hoffman (1984) had a higher precision than other models in simulating Basil yield reduction function based on saturated soil extract salinity. The overall observations revealed that van Genuchten and Hoffman (1984), Steppuhnet al., (2005) and Homaeeet al., (2002) models were accurate for simulating Basil root water uptake and yield response to saturated soil extract salinity. Considering the presented results, it seems that among math-empirical models for salinity stress conditions, model of van Genuchten and Hoffman (1984) is more accurate than Maas and Hoffman (1977), Dirksen and Augustijn (1988) and Homaeeet al., (2002a) models. The works of Green et al., (2006) and Skaggs et al., (2006) came to the same conclusion. Our work indicated that mostly statistical models have lower precision than math-empirical models. Steppuhn et al., (2005a) reported that statistical models had the higher accuracy than math-empirical model of Maas and Hoffman (1977) and among statistical models, the modified Weibull model had the best fit on measured data which is in good agreement with the results of this study.
Conclusion: The goals of this research were to evaluate Basil response to saturated soil extract salinity, to estimate threshold value of Basil crop coefficients, to obtain yield reduction gradient, and also to investigate efficiency of available math-empirical models in estimating reduction functions. The results of this study indicated that the Basil threshold value obtained based on saturated soil extract salinity was 2.25 dSm-1 and the gradient of yield reduction was 7.2% per dSm-1 according to Maas and Hoffman (1977) linear fitting. The reached general conclusion was that among the math-empirical reduction functions, the model of van Genuchten and Hoffman (1984) had the highest accuracy when compared to the models of Maas and Hoffman (1977), Dirksen and Augustijn (1988) and Homaee et al., (2002a). Therefore, it is recommended to use the van Genuchten and Hoffman (1984), Steppuhn et al., (2005), and Homaee et al., (2002) models respectively, instead of the other models in this research.
A. Falahati Marvast; alireza hosseinpuor; Seyed Hassan Tabatabaei
Abstract
The objective of this study was to evaluate the effect of soil salinity on the availability and uptake of cadmium(Cd), lead(Pb), nickel(Ni), zinc(Zn) and copper(Cu) in a soil treated with municipal sewage sludge (MSS). Soil was salinized (2, 4, 8 and 12 dSm-1 soil paste extract) with NaCl + CaCl2 (1:1ratio), ...
Read More
The objective of this study was to evaluate the effect of soil salinity on the availability and uptake of cadmium(Cd), lead(Pb), nickel(Ni), zinc(Zn) and copper(Cu) in a soil treated with municipal sewage sludge (MSS). Soil was salinized (2, 4, 8 and 12 dSm-1 soil paste extract) with NaCl + CaCl2 (1:1ratio), and incubated at soil field capacity (FC) for 1 month. The soil was treated with a 1.5 percent of MSS and incubated again at FC for 1 month. Before planting,soluble and DTPA-TEA extractable of heavy metals and soluble Chloride(Cl-) were determined. Then barley seeds were planted and, plants were harvested 10 weeks after germination. The plant indices (dry weight, heavy metal concentration and heavy metal uptake) were measured. The results showed that all salinity levels significantly increased soluble and availability of Cd, Pb, Ni, Zn and Cu. Soil salinity had a significant effect on concentrations and absorption of Cd and Pb in plant (P
samaneh ahmadi gheshlaghi
Abstract
Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and is a major component of soil organic matter, which plays an important role in soil aggregation and carbon sequestration. Glomalin is produced only by the AM fungi. On the other hand, stressful environments such as salinity ...
Read More
Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and is a major component of soil organic matter, which plays an important role in soil aggregation and carbon sequestration. Glomalin is produced only by the AM fungi. On the other hand, stressful environments such as salinity can affect the AM fungi .The purpose of this study was to investigate the effect of NaCl salinity on glomalin production by Glomerales in symbiosis with corn plant. A factorial experiment was conducted in completely-randomized design (CRD) with four replications in a greenhouse. Factors were NaCl salinity with three levels (S0: 1.34, S1:4 and S2: 8 dS/m) and mycorrhizal fungi with four levels (non mycorrhizal, Glomus versiforme, G. intraradices, G. etunicatum). The results showed that the interaction of salinity and mycorrhizal fungi on plant dry weight, leaf proline, root colonization percentage, EEG and TG was significant at p
A. Hassanoghli; Sh. Pedram
Abstract
Conventional graded granular filters which are commonly used in subsurface drainage projects in Iran, encounter various difficulties such as huge costs and long distances from source of gravels and led to use of other materials as envelopes. Synthetic products can be justified over granular filters ...
Read More
Conventional graded granular filters which are commonly used in subsurface drainage projects in Iran, encounter various difficulties such as huge costs and long distances from source of gravels and led to use of other materials as envelopes. Synthetic products can be justified over granular filters due to their comparable performance, improved economy and ease of placement. Considering that, it’s essential to assess selected synthetic envelopes performance before setting them in the field. The objective of this study is assessment of permeameter test proccessing (based on ASTM D-5101 standard), using 3 different PLM synthetic envelopes (PP450, PP700 and PP900) in application of water with different salinity (EC= 22.2 dS/m and 0.78 dS/m) and saline-sodic soil (EC= 169.3 dS/m and SAR= 45.18 (meq/lit)0.5), prepared from north Khoram-Shahr drainage project located in Khuzestan Provience. This study deal with evaluation of permeability tests results by applying saline water and soil which is not common in permeameter standard tests. So, a distinctive point of this research is using drainage water with high salinity, in comparison with applying normal water and also saline soil. For this purpose, two physical models of permeameter used to do a series of permeability tests by varying synthetic envelope types and saline and normal water. Permeability tests were done at 5 different hydraulic gradients (1, 2.5, 5, 7.5 and 10). Variations of discharge, hydraulic conductivity and gradient ratio (GR) were measured and investigated statically as factorial experiments in the form of randomized complete design. The results demonstrated that the more salinity the lower the hydraulic conductivity in all synthetic envelopes. The average hydraulic conductivity by applying normal water were 1.29, 1.36 and 1.26 times more than the average hydraulic conductivity by applying saline water for PP450, PP700 and PP900 samples respectively. Based on all tests of gradient ratios, it can be concluded that none of the envelope samples were susceptible to clogging, even in application of saline soil and water, even though the probability of clogging by applying saline water was higher. Also, it should be noticed that water quality is essential to encounter in permeability tests.
V. R. Verdinejad; H. Ebrahimiam; H. Ahmadi
Abstract
A transient drainage simulation model, SWAP, was used to evaluate the performance of subsurface drainage system. SWAP model was calibrated by measured daily data including water table depth, drain discharge rate and soil and water drain salinity collected from Behshahr Ran drainage system for 120 days ...
Read More
A transient drainage simulation model, SWAP, was used to evaluate the performance of subsurface drainage system. SWAP model was calibrated by measured daily data including water table depth, drain discharge rate and soil and water drain salinity collected from Behshahr Ran drainage system for 120 days during 1385. Calibration of SWAP model was done by inverse modeling via linking with WinPEST model. In order to calibrate drainage quantity parameters, two objective functions were defined to minimize difference between measured and simulated values of the water table depth and drain discharge rate, simultaneously. To calibrate drainage quality parameters, another objective function was also defined to minimize difference between measured and simulated values of soil salinity. There were good agreements between measured and simulated values of drain discharge rate and water table depth. The absolute error of estimation was 7 and 4 % for water table depth and drain discharge rate, respectively. Measured cumulative drainage was 7.5 % (5.3 mm) greater than its simulated value. The SWAP model could also simulate soil and drainage water salinity with a reasonable accuracy. The results of this study indicated that the performance of the SWAP model could be considerably improved using inverse modeling.
M.H. Najafi Mood; A. Alizadeh; K. Davari; M. Kafi; A. Shahidi
Abstract
This experiment was conducted based upon a factorial split plot design consisting of three factors: salinity with three levels (2.2, 5.5 and 8.3 dS/m), irrigation with four levels (50%, 75%, 100% and 125%), cultivars with two levels (Varamin and Khordad). There were three replicates for each treatment ...
Read More
This experiment was conducted based upon a factorial split plot design consisting of three factors: salinity with three levels (2.2, 5.5 and 8.3 dS/m), irrigation with four levels (50%, 75%, 100% and 125%), cultivars with two levels (Varamin and Khordad). There were three replicates for each treatment combination. Salinity was considered as main plot while the other factors were arranged as sub plots in the experiment. Effects salinity and deficit irrigation on yield for cultivars of cotton studied with Marginal Production(MP), Marginal Rate of Technical Substitution(MRTS) and Value of Marginal Production(VMP) indexes. Also for economics analysis, optimum depth of irrigation for deficit irrigation and complete irrigation depth were determined for tow cultivar. MPI showed That in deficit irrigation condition, yield of Khordad less than Varamin, for 1 centimeter of irrigation depth. But in over irrigation level , decreasing yield of Khordad rather than Varamin. Also MPECw showed, That yield decreased 31.8 Kg/ha on Varamin and 76.5 Kg/ha on Khordad cultivars, by increasing 1 dS/m salinity of irrigation water. MRTS index showed for instant yield, when salinity of irrigation water decrease 1 dS/m, must be increase depth of irrigation, 1.68, 3.85 cm for Varamin and Khordad respectively. So that, in equal situation of irrigation water salinity, optimum irrigation depth for Khordad was rather than Varamin.Also in all of salinity levels, optimum irrigation depth, for Khordad was rather than Varamin.
N. Sedaghati; S.J. Hosseinifard; A. Mohammadi Mohammadabadi
Abstract
Unsustainable harvesting of agricultural water resources in the province of Kerman, has caused an annual average of one-meter drop in ground water levels. Surface irrigation methods in pistachio trees have low efficiency because of inherent characteristics and its incorrect application, as well as low ...
Read More
Unsustainable harvesting of agricultural water resources in the province of Kerman, has caused an annual average of one-meter drop in ground water levels. Surface irrigation methods in pistachio trees have low efficiency because of inherent characteristics and its incorrect application, as well as low access to water resource in pistachio regions. Therefore under the current critical condition, basic development of pressurized irrigation systems is an effective step to raise water use efficiency in the pistachio orchards. In this research, two irrigation systems including conventional surface drip irrigation and subsurface drip irrigation (SDI) with two drip line depths (30cm and 50cm) with three levels of water irrigation in each treatment, including 40%, 60% and 80% of irrigation requirement of pistachio in surface irrigation system (2932, 4398 and 5864 m3/ha.year respectively) for four years, was studied. Growth and yield factors, water use efficiency (WUE) and water and salinity distribution in root zone were measured. The results indicated that 30cm installation depth was the best treatment. Between irrigation systems, amounts of 60% and 80% irrigation requirement don't have significant difference, but 40% irrigation requirement treatment, affected negatively on most of evaluated factors significantly. Therefore with regard to all evaluated factors in this research, subsurface drip irrigation with buried drip line at 30cm and 60% of irrigation requirement of pistachio in surface irrigation system, with water use efficiency of 0.290kg/m3 and 25% water saving in comparison with surface drip irrigation system, was the best treatment and recommended.
V. Mozafari; L. Omidi
Abstract
A factorial greenhouse experiment as completely randomized design with six replications was conducted to Study the effects of potassium and salinity application on morphological and physiological parameters of pistachio seedling (cv. Badami-e-Zarand) in perlit. Treatments were 2 levels of K (0 and 1 ...
Read More
A factorial greenhouse experiment as completely randomized design with six replications was conducted to Study the effects of potassium and salinity application on morphological and physiological parameters of pistachio seedling (cv. Badami-e-Zarand) in perlit. Treatments were 2 levels of K (0 and 1 mM KNO3) and 3 levels of salinity (0, 100 and 200 mg NaCl kg-1 soil). Prolin and redusing sugars contents whit 3 replications and on two separate time (3 and 6 days after salinity application) measured. A factorial split analyzed to test the trend of this factors so that salinity×pottasium and time were as main and sub factors respectively. Results showed that as salinity increased shoot and root dry weights 17% and 15% increased, respectively. As increasing K consentration from 0 to 1 mM, increased dry weight shoot from 0.885 to 1.007 per pot. 1 mM K application increased the leaf number and stem height. As salinity increased significantly increased Na and decreased Mg of plant. Prolin and redusing sugars contents increased three days after application of salinity treatments while K decreased prolin consentration. redusing sugars content significantly affected by time factor so that redusing sugars consentration redused after 3 days but it wasn’t correct about prolin content