@article { author = {Eslami, S. F. and Vaezi, A. R.}, title = {Runoff and Sediment Production under the Similar Rainfall Events in Different Aggregate Sizes of an Agricultural Soil}, journal = {Water and Soil}, volume = {29}, number = {6}, pages = {1590-1600}, year = {2016}, publisher = {Ferdowsi University of Mashhad}, issn = {2008-4757}, eissn = {2423-396X}, doi = {10.22067/jsw.v29i6.35299}, abstract = {Introduction: Soil erosion by water is the most serious form of land degradation throughout the world, particularly in arid and semi-arid regions. In these areas, soils are weakly structured and are easily disrupted by raindrop impacts. Soil erosion is strongly affected by different factors such as rainfall characteristics, slope properties, vegetation cover, conservation practices, and soil erodibility. Different physicochemical soil properties such texture, structure, infiltration rate, organic matter, lime and exchangeable sodium percentage can affect the soil erodibility as well as soil erosion. Soil structure is one of the most important properties influencing runoff and soil loss because it determines the susceptibility of the aggregates to detach by either raindrop impacts or runoff shear stress. Many soil properties such as particle size distribution, organic matter, lime, gypsum, and exchangeable sodium percentage (ESP) can affect the soil aggregation and the stability. Aggregates size distribution and their stability can be changed considerably because of agricultural practices. Information about variations of runoff and sediment in the rainfall events can be effective in modeling runoff as well as sediment. Thus, the study was conducted to determine runoff and sediment production of different aggregate sizes in the rainfall event scales. Materials and Methods: Toward the objective of the study, five aggregate classes consist of 0.25-2, 2-4.75, 4.75-5.6, 5.6-9.75, and 9.75-12.7 mm were collected from an agricultural sandy clay loam (0-30 cm) using the related sieves in the field. Physicochemical soil analyses were performed in the aggregate samples using conventional methods in the lab. The aggregate samples were separately filed into fifteen flumes with a dimension of 50 cm × 100 cm and 15-cm in depth. The aggregate flumes were fixed on a steel plate with 9% slope and were exposed to the simulated rainfalls for investigating runoff and soil loss (sediment). Ten same rainfall events with 60 mm h-1 in intensity for 30 min were applied using a designed rainfall simulator in the lab. The rainfall simulator had a rainfall plate with a dimension of 100 cm × 120 cm which has been fixed on a metal frame with 3m height from the ground surface. Runoff and sediment samples were collected using a plastic container placed the out-let of the flumes. Runoff generation of each flume was determined based on multiplying total content volume of the tank by volume proportion of water in the sample. Soil loss for each event was determined using multiply the container volume and sediment concentration of the uniform sample. Initial soil moisture was measured in the aggregate samples before each rainfall event in order to investigate its effect on the runoff and sediment variations in the event scales. Runoff, soil loss and initial soil moisture data were evaluated for normality before any statistical analysis using SPSS version 18 software. Differences of runoff and soil loss among different rainfall events were analyzed using the Duncan's test. Results and Discussion: Based on the results, the soil was calcareous having 16% equivalent calcium carbonate. Low amount of organic matter (0.6%). The measured aggregate stability showed to be very low, indicating high susceptibility of the aggregates to water erosion processes. Significant differences were found among the rainfall events in runoff (p< 0.05), sediment (p< 0.001) and sediment concentration (p< 0.001) which were associated with aggregate breakdown by raindrop impacts in the rainfall events. Runoff and sediment were strongly increased from each event to other event. Significant relationship was found between sediment and runoff in the events (R2= 0.89, p< 0.001). However, sediment showed to have higher increasing trend as compared to runoff variation pattern in the event scale. Sediment value was very low in the first rainfall event due to high portions of the water-stable aggregates and low level of soil moisture. Difference in runoff from each event to other event was directly related to variation of infiltration rate. In the final events, aggregate disruption was strongly enhanced and remarkably decreased the soil infiltration rate so runoff and sediment significantly increased. After seventh rainfall event, sediment production was observed to be higher (2.93 times) as compared with runoff production and in consequence sediment concentration strongly increased. The difference in the infiltration rate among the rainfall events was attributed with differences in initial soil moisture and macropores.}, keywords = {Aggregate,runoff,Sediment Concentration,Simulated Rainfall}, title_fa = {بررسی تولید رواناب و رسوب تحت رخدادهای یکسان بارندگی در خاک کشاورزری با اندازه متفاوت خاکدانه}, abstract_fa = {آگاهی از میزان تغییرات رواناب و رسوب در رخدادهای باران می تواند در مدل سازی تولید رواناب و رسوب مفید واقع شود. از این رو این پژوهش با هدف بررسی تولید رواناب و رسوب خاکدانه ها طی رخدادهای یکسان باران در خاک کشاورزی به اندازه های مختلف خاکدانه انجام رسید. برای انجام این پژوهش، پنج کلاس اندازه خاکدانه از یک خاک لوم رس شنی به وسیله الک های مربوطه نمونه برداری شد. خاکدانه ها تا عمق 10 سانتی متری به پانزده فلوم با ابعاد 100 سانتی متر × 50 سانتی متر و عمق 15 سانتی متر در سه تکرار منتقل شد. سپس فلوم های محتوی خاکدانه در شیب 9 درصد قرار گرفته و تحت 10 رخداد باران شبیه سازی شده با شدت یکسان 60 میلی متر بر ساعت به مدت 30 دقیقه و فواصل زمانی پنج روز قرار گرفتند. در پایان هر رخداد مقدار رواناب و رسوب تولید شده در ظروف انتهای فلوم ها جمع آوری و اندازه گیری شد. نتایج نشان داد که تفاوتی معنی دار بین رخدادها از نظر رواناب (05/0p}, keywords_fa = {باران شبیه سازی شده,ساختمان خاک,غلظت رسوب}, url = {https://jsw.um.ac.ir/article_38262.html}, eprint = {https://jsw.um.ac.ir/article_38262_f6017791802b961f09726f9f32cf8f73.pdf} }