Document Type : Research Article

Authors

1 Department of Soil Science Engineering, College of Agriculture and Natural Resource, University of Tehran

2 Department of Soil Science, College of Agriculture, Shiraz University

Abstract

Abstract
In this study, interaction between AMF (G. mosseae and Glomus spp., respectively indigenous and non-indigenous of HM-contaminated areas) with Cd-resistant PGPRs (Bacillus mycoides and Micrococcus roseus, indigenous of contaminated areas) on the growth, Cd and nutrient uptake of maize plant (Zea mays L.) in Cd polluted soil were investigated. With increasing levels of Cd, shoot and root dry weights, shoot Fe and P contents decreased but root and shoot Cd content increased. Root colonization was varied at different levels of Cd and co-inoculation with PGPRs. G. mosseae treatment had greatest amount of shoot and root dry weight, Fe and P of shoot at high concentration of Cd. At the levels of 100 and 200 Cd, in only mycorrhizal treatments, plants colonized by Glomus spp. and G. mosseae had respectively high content of Cd roots. At both levels of Cd, shoot Cd content in co-inoculation of M. roseus and B. mycoides with G. mosseae increased and decreased respectively in comparison with single inoculation of G. mosseae. While, at the levels of 100 and 200 Cd, shoot Cd content in co-inoculation of PGPRs with Glomus spp. respectively increased and decreased/did not significant different compared to single inoculation of Glomus spp. Co-inoculation of G. mosseae and M. roseus, with maximum Cd-accumulated in plant, was the most effective treatment in Cd phytoremediation and stabilization.

Keywords: AM fungi, Plant growth promoting rhizobacteria, Phytoremediation, Cd and maize

CAPTCHA Image