امکان سنجی پالایش محیط های آبی آلوده به کادمیوم توسط علف شاخی (Ceratophyllum demersum L.)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی، اهواز

2 دانشگاه شهید چمران اهواز

3 دانشگاه علوم پزشکی جندی شاپور اهواز

چکیده

کادمیوم از جمله عناصر کم مقدار و مضر برای حیات و آلاینده ای خطرناک به شمار می رود. این عنصر از طریق منابع آلوده از جمله پساب ها، فاضلاب (شهری و صنعتی) و زه آب های آلوده سبب آلودگی، کاهش کیفیت و گاهی حتی سمیت منابع آب می گردد. با توجه به افزایش جمعیت و نیاز به منابع آب بیشتر، همچنین افزایش آلوده شدن این منابع آبی ارزشمند، نیاز شدیدی به روش های نو و ارزان برای پالایش و بهبود کیفیت آب ها احساس می شود. گیاه پالایی با گیاهان آبزی روشی مؤثر و ارزان برای بهبود کیفیت آب و پساب هاست. گیاه علف شاخی (Ceratophyllum demersum L.) از گیاهان آبزی بومی رودخانه های ایران است، و به وفور در ایران یافت می شود. در این پژوهش طی 14 روز کشت علف شاخی در محلول غذایی هوگلند آلوده در 4 سطح مختلف کادمیوم (1، 2، 4 و 6 میلی گرم در لیتر) پالایش محیط های آبی آلوده به کادمیوم امکان سنجی شد. نتایج حاصله نشان داد که، این گیاه کادمیوم را به مقدار زیادی جذب زیستی کرده است و درصد جذب کادمیوم تا حدود 82% در سطح 2 میلی گرم در لیتر رسید. عامل غلظت زیستی و شاخص جذب حداکثری کادمیوم در سطوح 2 و 6 میلی گرم در لیتر، به ترتیب 9/707 و 92/3 میلی گرم در هر ظرف به دست آمد. کمترین و بیشترین مقدار شاخص تولید زیست توده گیاهی 62/1 و 60/3 گرم در روز، به ترتیب مربوط به سطوح آلودگی 6 و 0 میلی گرم در روز بود. پالایش سبز کادمیوم با رشد و تکثیر گیاه علف شاخی از پساب های صنعتی پیشنهاد می شود.

کلیدواژه‌ها


عنوان مقاله [English]

A Potential Method for Remediation of Cadmium Pollution in Aquatic Medium by Hydrophyte, Ceratophyllum demersum L.

نویسندگان [English]

  • Amir Parnian 1
  • Mostafa Chorom 2
  • Nematolah Jafarzade Haghighy Fard 3
1 Ahvaz Branch, Islamic Azad University
2 Shahid Chamran University, Ahvaz
3 Ahvaz Jundishapur University of Medical Sciences
چکیده [English]

Introduction: With increasing of population and the valuable water resource pollutions, a demand has been felt for new and inexpensive methods in order to remediation and improving of water quality. Cadmium is a trace element. In low concentration, this heavy metal is harmful to life, and considered as a dangerous pollutant. Cadmium leads to pollution and reduction of water quality; sometimes even toxicity through contaminated sources such as wastewater (Agricultural, municipal and industrial). Phytoremediation with aquatic macrophytes is an effective and inexpensive method for improving water quality and wastewater. The aim of this study was to investigatethe cadmium phytoremediation by Ceratophyllumdemersum L. as a potential method for remediation of cadmium pollution in aquatic medium.
Materials and Methods: In this study, the remediation of cadmium pollution in aquatic medium monitored, within 14 days cultivation of coontail (Ceratophyllumdemersum L.). At first, for estimating the level of local wastewater cadmium pollutions, five-month cadmium concentration measurement of steel industrial wastewater and urban wastewater set. Then, plants collected from the irrigation channels of ShahidChamran University of Ahvaz. After finding the best pH of nutrient solution for Ceratophyllumdemersum L. growth by cultivating the plants in 2 liters pots filled by the solutions withthree different pH(5.5, 7 and 9.5) within three weeks; 12 grams of plants cultivated in 2 liters of Hoagland nutrient solution contaminated by cadmium(pH = 7). The initial contamination levels were setasfive different concentrations of cadmium (0, 1, 2, 4, and 6 mg l-1) with three replications. The cadmium concentrations of the pots were measured every day and on the last day of cultivation, plants wet weight, plants dry weight and Cd concentration in plants weremeasured. Then,biomass production, Cd bioconcentration factor (BCF), Cd uptake index, and Cd uptake percentage of plants were calculated. Standard deviations calculationand correlation and regression analysis were performed using Microsoft Office Excel2007 and SPSS 16. One-way ANOVA performed to identify significant differences in metal concentrations in the different treatments. Differences considered significant atp < 0.05.
Results and Discussion: Among three pH (5.5, 7 and 9.5) for plants cultivation, C. demersum L.grewbetter in pH = 7. In fact, the average amount of produced biomasses were 46.6 g (pH = 5.5), 79.6 g (pH = 7) and 68.4 g (pH = 9.5). Therefore, to investigate the Cd remediation, the pH of nutrient solution set equal to 7. The final Cd concentrations in nutrient solution for initial Cd concentrations of 1, 2, 4 and 6 mg l-1 were 0.30, 0.36, 2.76 and 3.85 mg l-11respectively. Moreover, the Cd uptake percentage after 14days cultivation of C. demersum L.in nutrient solution for initial Cd concentrations of 1, 2, 4 and 6 mg l-1 were 70.00, 82.01, 31.00 and 35.83 %respectively. Cd uptake percentage of plants for initial concentrations of 4 and 6 mg l-1weresignificantly lesser than those of 1and 2 mg l-1.The decreased uptake efficiency percentage maybe caused by the effect of Cd toxicity on plant cell membrane permeability and efficiency.The average of BCF in plants for initial Cd concentrations of 1, 2, 4 and 6 mg l-1 were 384.4, 707.9, 66.5 and 75.0respectively. High reduction ofBCF amounts with increasing the initial concentration of 2to 4 and 6mg l-1, maybe caused by cadmium physiological adverse effects on plants. The averages of uptake index in plants were 1.26, 2.95, 2.24 and 3.92 mg for initial Cd concentrations of 1, 2, 4 and 6 mg l-1respectively. The results showed a reduction between 2 and 4 mg l-1concentrations that probablycaused by Cd toxicity disruption on plants uptake mechanism and growth. Moreover, the increase of plants uptake index in initial concentration of 6 mg l-1 could be explain by partial losing of the selective permeability of the plants cell membrane. The maximum (3.60 g/day) and minimum (1.62 g/day) of biomass production related to pollutant concentrations of 0 and 6 mg l-1 respectively, and it shows a greatefect of the Cd on C. demersum L.growth.
Conclusion: The plant accumulated cadmium efficiently, and the remediation efficiency was near to 82%. However, the pollutant removal was not complete in a short time.In total, phytoremediation of cadmium and other pollutants from wastewater or other aqueoussolutions by Ceratophyllumdemersum, as a native aquatic plant of most of Iran’s rivers, could be anefficient and appropriatemethod.

کلیدواژه‌ها [English]

  • Aquatic macrophyte
  • Cadmium
  • Ceratophyllum demersum L
  • Heavy metals
  • Wastewater Phytoremediation
1- Abul Kashem M.d., Singh B.R., Imamul Huq S.M., and Kawai Sh. 2008. Cadmium phytoextraction efficiency of Arum (Colocasia antiquorum), Radish (Raphanus sativus l.) and Water Spinach (Ipomoea aquatica) grown in hydroponics, Water, Air, and Soil Pollution, 192:273-279.
2- Ahn C.K., Park D., Woo S.H., and Park J.M. 2009. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants, Journal of Hazardous Materials, 164:1130-1136.
3- Alizadeh A. 2007. Comparison of effect of organic chelate, synthetic chelate and compost in remediation heavy metal (Cd, Pb and Ni) polluted soil under Canola cultivation, M.Sc. thesis, Shahid Chamran University of Ahwaz, Ahwaz. (in Persian with English abstract)
4- Alyüz B., and Veli S. 2009. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins, Journal of Hazardous Materials, 167:482-488.
5- Aravind P., and Prasad M.N.V. 2005. Cadmium-Zinc interaction in hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology, Journal of Plant Physiology, 17(1):3-20.
6- Chen H., Shao Y., Xu Z., Wan H., Wan Y., Zheng Sh., and Zhu D. 2011. Effective catalytic reduction of Cr(VI) over TiO2 nanotube supported Pd catalysts, Applied Catalysis B: Environmental, 105:255-262.
7- Dashi M. 2008. Evaluation of N-NH3 and P removal of urban wastewater using free-floated macrophyte Lemnna gibba, M.Sc. thesis, Islamic Azad University- Ahwaz branch, Ahwaz. (in Persian with English abstract)
8- Demirezen D. 2007. Effects of salinity on growth and nickel accumulation capacity of Lemna gibba (Lemnaceae), Journal of Hazardous Material, 147:74-77.
9- Erfanmanesh M., and Afyoni M. 2002. Environmental polution (water, soil and air), 2nd edition, Isfahan Arkan publication, Isfahan. (in Persian)
10- Fahimi nia M. 2006. Handbook of wastewater engineering for small communities and rural areas, Publication of research and improve the efficiency of water and electricity industry company, Tehran. (in Persian)
11- Fox L.J., Struik P.C., Appleton B.L., and Rule J.H. 2008. Nitrogen phytoremediation by water hyacinth (Eichhornia crassipes (Mart.) Solms), Water Air Soil Pollutant, 194:199-207.
12- Fu F., and Wang Q. 2011. Removal of heavy metal ions from wastewaters: A review, Journal of Environmental Management, 92:407-418 .
13- Ghahreman A. 1994. Iran’s comorphyts (Plant systematics), 4th volume, Tehran University publication, Tehran. (in Persian)
14- Jimenez-Rodriguez A.M., Duran-Barrantes M.M., Borja R., Sanchez E., Colmenarejo M.F., and Raposo F. 2009. Heavy metals removal from acid mine drainage water using biogenic hydrogen sulphide and effluent from anaerobic treatment: Effect of pH, Journal of Hazardous Materials, 165:759-765.
15- Kara Y., Basaran D., and Kara I. 2003. Bioaccumulation of nickel by aquatic macrophyta Lemna minor (duckweed), International Journal of Agriculture and Biology, voulme 5, 3:281-283.
16- Khan S., Ahmad I., Shah M.T., Rehman Sh., and Khaliq A. 2009. Use of constructed wetland for the removal of heavy metals from industrial wastewater, Journal of Environmental Management, 90:3451-3457.
17- Khellaf N., and Zerdaoui M. 2009. Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L., Bioresource Technology, 100:6137-6140.
18- Khoshgoftarmanesh A.H. 2007. Fundamental plant nutrition, Isfahan University of technology, center of publication, Isfahan. (in Persian)
19- Khoshgoftarmanesh A.H. 2007. Hydroponics, Isfahan University of technology, center of publication, Isfahan. (in Persian)
20- Kieu H.T.Q., Muller E., and Horn H. 2011. Heavy metal removal in anaerobic semi-continuous stirred tank reactors by a consortium of sulfate-reducing bacteria, Water Research, 45:3863-870.
21- Lu Q., He Z. L., Graetz D. A., Stoffella P. J., and Yang X. 2010. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.), Environmental Science and Pollution Reserch International, 17(1):84-96.
22- Marin D.C.C.M., and Oron G. 2007. Boron removal by the duckweed Lemna gibba: A potential method for the remediation of boron-polluted waters, Water Research, 41:4579-4584.
23- Minoui S., Minai-tehrani D., Samiee K., and Farivar Sh. 2008. Study of the macroscopic and microscopic changes of the effect of cadmium on Chlorophytum comosum, Iranian Journal of Biology, 21, 4: 737-747. (in Persian with English abstract)
24- Miranda G., Quiroz A., and Salazar M. 2000. Cadmium and lead removal from water by the duckweed Lemna gibba L. (Lemnaceae), Hidrobioligica, 10(1):7-12.
25- Mirbagheri S.A., and Hosseini S.N. 2005. Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination, 171:85-93.
26- Mirbagheri S.A., Shans A., Hashemi S.H., and Shams H. 2010. Removal of nickel (II) from electroplating wastewater through reverse osmosis method, Journal of Environmental Sciences and Technology, 1: 1-11. (in Persian with English abstract)
27- Miretzky P., Saralegui A., and Cirelli A.F. 2004. Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina), Chemosphere, 57:997-1005.
28- Mishra S., Srivastava S., Tripathi R.D., Kumar R., Seth C.S., and Gupta D.K. 2006. Lead detoxification by coontail (Ceratophyllum dermersum L.) involves induction of phytochelatins and response of antioxidants in response to its accumulation, Chemosphere, 65:1027-1039.
29- Mishra V.K., and Ttipathy B.D. 2008. Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes, Bioresource Technology, 99:7091-7097.
30- Mohsen-Nia M., Montazeri P., and Modarress H. 2007. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes, Desalination, 217:276-281.
31- Parnian A., Chorom M., Jafarzadeh Haghighi-Fard N., and Dinarvand M. 2011. Phytoremediation of nickel from hydroponic system by hydrophyte coontail (Ceratophyllum demersum L.), Journal Of Science And Techology Of Greenhouse Culture, 2(6): 75-85. (in Persian with English abstract)
32- Parnian A., Chorom M., Jafarzadeh Haghighi Fard N., and Dinarvand M. 2015. Biological removal of cadmium by aquatic macrophyte Lemna gibba (a potential method for the phytoremediation of polluted water and wastewater), Journal Of Water And Soil Science (Science And Techology Of Agriculture And Natural Resources), 18(70): 283-294. (in Persian with English abstract)
33- Pivetz B.E. 2001. Phytoremediation of contaminated soil and groundwater at hazardous waste sites. in ground water issue, EPA/540/S-01/500.
34- Polomski R. F., Taylor M. D., Bielenberg D. G., Bridges W. C., Klaine S. J., and Whitwell T. 2009. Nitrogen and phosphorus remediation by three floating aquatic macrophytes in greenhouse-based laboratory-scale subsurface constructed wetlands, Water Air Soil Pollutant, 197:223-232.
35- Saygideger S., and Dogan M. 2004. Lead and cadmium accumulation and toxicity in the presence of EDTA in Lemna minor L. and Cratophyllum demersum L., Bulltin of Environmental Contamination Toxicology, 73:182-189.
36- Saygideger S., Dogan M. and Keser G. 2004. Effect of lead and pH on lead uptake, chlorophyll and nitrogen content of Typha latifolia L. and Ceratophyllum demersum L., International Journal of Agricultural and Biology, 6(1):168-172.
37- Schröder P., Navarro-Aviño J., Azaizeh H., Goldhirsh A.G., DiGregorio S., Komives T., Langergraber G., Lenz A., Maestri E., Memon A.R., Ranalli A., Sebastiani L., Smrcek S., Vanek T., Vuilleumier S., and Wissing F. 2007. Using phytoremediation technologies to upgrade wastewater treatment in Europe, Environmental Science and Pollution Reserch International, 14(7):490-497.
38- Smara A., Delimi R., Chainet E., and Sandeaux J. 2007. Removal of heavy metals from diluted mixtures by a hybrid ion-exchange/electrodialysis process, Separation and Purification Technology, 57:103-110.
39- Standard methods for examination of water and wastewater, 20th ed., APHA, Washington DC. 2005.
40- Tofighy M.A., and Mohammadi T. 2011. Adsorption of divalent heavy metal ions from water using carbon nanotube sheets, Journal of Hazardous Materials, 185:140-147.
41- Ye Z.H., Baker A.J.M., Wong M.H., and Willis A.J. 2003. Copper tolerance, uptake and accumulation by Phragmites australis, Chemosphere, 50:795-800.
42- Zhang L., Zhao Y.H., and Bai R. 2011. Development of a multifunctional membrane for chromatic warning and enhanced adsorptive removal of heavy metal ions: Application to cadmium, Journal of Membrane Science, 379:69-79.
CAPTCHA Image