ارزیابی توانایی مدل‌های هوشمند در پیش‌بینی بارندگی ماهانه به کمک الگوهای پیوند از دور (مطالعه موردی استان خراسان رضوی)

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

الگوهای پیوند دور از جمله عوامل موثر بر میزان بارش می‌باشند، در این تحقیق توانایی مدل‌های هوشمند در پیش‌بینی بارندگی ماهانه به کمک داده‌های پیوند از دور در هشت ایستگاه سینوپتیک استان خراسان رضوی برای سال‌های 1991 تا 2010 مورد بررسی قرار گرفت. مدل‌های هوشمند مورد بررسی عبارتند از مدل شبکه عصبی مصنوعی، مدل استنتاج فازی و مدل نروفازی. معیارهای آماری برای مقایسه نتایج مدل‌ها شامل ضریب‌ همبستگی، میانگین‌ خطای ‌اریبی، میانگین ‌مربعات‌ خطا و معیارهای ترکیبی جاکووی دز و صباغ می‌باشد. پس از یافتن بهترین ساختار برای مدل‌های هوشمند و مقایسه آن‌ها، مشخص گردید مدل نروفازی بهترین نتایج را دارا می‌باشد. معیار‌های آماری برای پیش‌بینی بارش به روش نروفازی به ترتیب در یک ماهه آینده برابر 8/0، 55/0-، 43/0، 7/0، 91/0، برای دو ماهه آینده برابر 79/0، 32/1-، 48/0، 56/1، 4/0 و برای سه ماهه آینده برابر 73/0، 37/1-، 54/0، 47/1، 36/0 به‌دست آمد. نتایج مدل‌های هوشمند برای ایستگاهی که داده‌های آن در بخش آموزش بکار برده نشده بود حاکی از این است که مدل‌ها برای منطقه جغرافیایی آموزش دیده توانایی پیش‌بینی بارش را دارند. بررسی دقت مدل نروفازی در هر یک از کلاس‌های شاخص بارندگی استاندارد نشان داد که این مدل در برآورد مقادیر بارش در کلاس‌های تر سالی بسیار شدید و تر سالی شدید کم برآورد داشته است. در نهایت نتایج این تحقیق نشان داد که مدل‌های هوشمند مخصوصاً مدل نروفازی ابزار مناسبی برای پیش‌بینی بارندگی می‌باشند، اما از این مدل‌ها در کلاس‌های تر سالی بسیار شدید و تر سالی شدید با تامل بیشتری باید استفاده نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Assessing Intelligent Models in Forecasting Monthly Rainfall by Means of Teleconnection Patterns (Case Study: Khorasan Razavi Province)

نویسندگان [English]

  • Farzaneh Nazarieh
  • H. Ansari
Ferdowsi University of Mashhad
چکیده [English]

Introduction: Rainfall is affected by changes in the global sea level change, especially changes in sea surface temperature SST Sea Surface Temperature and sea level pressure SLP Sea level Pressure. Climate anomalies being related to each other at large distance is called teleconnection. As physical relationships between rainfall and teleconnection patterns are not defined clearly, we used intelligent models for forecasting rainfall. The intelligent models used in this study included Fuzzy Inference Systems, neural network and Neuro-fuzzy. In this study, first the teleconnection indices that could affect rainfall in the study area were identified. Then intelligent models were trained for rainfall forecasting. Finally, the most capable model for forecasting rainfall was presented. The study area for this research is the Khorasan Razavi Province. In order to present a model for rainfall forecasting, rainfall data of seven synoptic stations including Mashhad, Golmakan, Nishapur, Sabzevar, Kashmar, Torbate and Sharks since 1991 to 2010 were used.
Materials and Methods: Based on previous studies about Teleconnection Patterns in the study area, effective Teleconnection indexes were identified. After calculating the correlation between the identified teleconnection indices and rainfall in one, two and three months ahead for all stations, fourteen teleconnection indices were chosen as inputs for intelligent models. These indices include, SLP Adriatic , SLP northern Red Sea, SLP Mediterranean Sea, SLP Aral sea, SST Sea surface temperature Labrador sea, SST Oman Sea, SST Caspian Sea, SST Persian Gulf, North Pacific pattern, SST Tropical Pacific in NINO12 and NINO3 regions, North Pacific Oscillation, Trans-Nino Index, Multivariable Enso Index. Inputs of the intelligent models include fourteen teleconnection indices, latitude and altitude of each station and their outputs are the prediction of rainfall for one, two and three months ahead. For calibration of the models, eighty percent of the data belonged to six stations. Mashhad, Golmakan, Sabzevar, Kashmar, Torbate and Sarakhs were used. Verification of the model was carried out in two parts. The first part of verification was done with twenty percent of the remaining data which belonged to the mentioned six stations. The second part of verification was done with data from the Nishapur station. Nishapur geographically is located between other stations and did not participate in the calibration. So, it provides a ondition for assessing models in location except for the calibration stations. To assess and compare the accuracy of the models, the following statistical criteria have been used: correlation coefficient (R), normal root mean square error (NRMSE), mean bias error (MBE), Jacovides criteria (t), and ratio (R2/t). To evaluate models in different rainfall depths, rainfall data based on standard precipitation index (SPI) was divided into seven classes, and the accuracy of each class was calculated separately.
Results and Discussion: By comparing the models' ability to predict rainfall according to the R2 /t criteria it can be concluded that the ranking of the models is Neuro-fuzzy model, Fuzzy Inference Systems, and Neural network, respectively. R2 /to criteria for prediction of rainfall one, two, and three month earlier in the Neuro-fuzzy model are 0.91, 0.4, 0.36, in Fuzzy Inference Systems are 0.76, 0.38, 0.31 and in the neural network model are 0.43,0.27, 0.2. The statistical criteria of Neuro-fuzzy model (R, MBE, NRMSE, t, R2/ t) for rainfall forecasting one month earlier are 0.8, -0.55,0.43, 0.7 , 0.91; two months earlier are 0.79, -1.32, 0.48, 1.56, 0.4; and three months earlier are 0.73,-1.37, 0.54, 1.47, 0.36 . Calculation of MBE criteria for Neuro-fuzzy models in all classes of SPI indicated that this model has a lower estimate in extremely wet and very wet classes. This is because of lack of data belonging to these classes for model training.
Conclusion: The results of this research showed that teleconnection indices are suitable inputs for intelligent models for rainfall prediction. Computing the best structure of fuzzy, neural network and Neuro-fuzzy models showed that Neuro-fuzzy can predict rainfall the most accurately. But, the results of these models in very wet and extremely wet condition are not reliable .So, these models should be used with more caution in these conditions.

کلیدواژه‌ها [English]

  • Fuzzy Inference Systems
  • Neural Network
  • Neuro-fuzzy
  • Rainfall forecasting
  • Teleconnection patterns
1- Alizadeh A., Erfanian M., Ansari H.2011. Assessment of Teleconnection Patterns Affecting Rainfall and Temperature (Case Study: Mashhad Synoptic Station), Iranian Journal of lrrigation and drainage, 2(5): 176-185.) In Persian with English abstract(.
2- Almeira G.J., Scian B.2006. Some atmospheric and oceanic indices as predictors of seasonal rainfall in the Del Plata Basin of Argentina. Journal of Hydrology, 329: 350–359.
3- Drosdowsky W., Chambers L.E. 2001. Near global scale sea surface temperature anomalies as predictors of Australian seasonal rainfall, Journal of climate, 14:1677–1687.
4- Fallah-Ghalhari G.A. 2014. Rainfall Prediction Using Teleconnection Patterns Through the Application of Artificial Neural Networks, Modern Climatology. Book 1. Dr Shih-Yu Wang (Ed.), 361-386.
5- Gomez V., Casanovas A. 2002. Fuzzy logic and meteorological variables: a case study of solar irradiance, Fuzzy Sets and Systems, 126:121–128.
6- Jacovides C.P. 1998. Reply to comment on 'Statistical procedures for the evaluation of evapotranspiration computing models'. Agricultural Water Management, 37: 95-97.
7- Jang J.S.R. 1993. ANFIS: Adaptive-network-based fuzzy inference system, IEEE Trans. Syst., Man and Cybernetics, 23(3): 665–684.
8- Keskin M.E., Terzi O., Tayalan D. 2004. Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey. Hydrological Sciences–Journal–des Sciences Hydrologiques, 49(6):1001-1010.
9- Kim T.W., Valde´s J.B., Nijssen B., Roncayolo D. 2006. Quantification of linkages between large-scale climatic patterns and precipitation in the Colorado River Basin. Journal of Hydrology, 321:173–186.
10- Mekanik F., and Imteaz M.A. 2012. A Multivariate Artificial Neural Network Approach for Rainfall Forecasting: Case Study of Victoria, Australia. p. 1-5. Proceedings of the World Congress on Engineering and Computer Science, Vol I, 24-26 October 2012. WCECS, San Francisco, USA
11- Nazemosadat M.J., Setoodeh P., Safavi A. 2008. Improving Neural Network Models for forecasting Seasonal Precipitation in Southwestern Iran: The Evaluation of Oceanic- Atmospheric indices. Asia Oceania Geosciences Society 5th Annual General Meeting, at Busan Exhibition & Convention Center, Busan, South Korea.
12- Pongracz R., Bartholy J., and Bogardi I. 2001.Fuzzy rule-based prediction of monthly precipitation, Journal of Physical Chemistry B, 26(9):663–667.
13- Rezaee-Banafshe M., Jahan-Bakhsh S., Bayati-Khatibi M., Zeynali B. 2011. Forecast of Autumn and Winter Precipitation of West Iran by Use from Summer and Autumn Mediterranean Sea Surface Temperature, Physical Geography Research Quarterly 74, 47-62. (in Persian with English abstract).
14- Rezaeian-Zadeh M., Tabari H. 2012. MLP-based drought forecasting in different climatic regions. Theoretical and Applied Climatology, 109(3-4): 407-414.
15- Sabbagh J., Sayigh A.A.M., Al-Salam E.M.A. 1977. Estimation of the total solar radiation from meteorological data. Solar Energy, 19(3): 307-311.
16- Sedaghat Kerdar A., Fatahi E. 2008. Drought Early Warning Methods over Iran, Geography and Development Iranian Journal, 11: 76-89. (in Persian with English abstract).
17- Shukla R.P., Tripathi K.C., Pandey A.C., Das I.M.L. 2011. Prediction of Indian summer monsoon rainfall using Niño indices: A neural network approach, Atmospheric Research, 102 (1–2): 99–109.
18- Smith, T.M., Arkin P.A., Sapiano M.R.P., CHang C.Y. 2010. Merged Statistical Analyses of Historical Monthly Precipitation Anomalies Beginning 1900, Journal of Climate, 23: 5755-5770.
CAPTCHA Image