تعیین موازنه آبی و مراحل بحرانی آن در گندم دیم با استفاده از شاخص تنش آبی گیاه (CWSI)

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه فردوسی مشهد

2 پژوهشگاه علوم و فنون هسته‌ای، سازمان انرژی اتمی ایران

چکیده

به منظور تعیین آستانه تنش آبی و وضعیت آن در ژنوتیپ‌های مختلف گندم دیم در مدیریت‌های مختلف مصرف نیتروژن، آزمایشی در قالب طرح بلوک‌های کامل تصادفی، به صورت کرت‌های دو بار خرد شده با دو زمان مصرف (کل در پائیز و در پائیز و در بهار) و چهار سطح نیتروژن (صفر، 30، 60 و 90 کیلوگرم در هکتار) بر روی 7 ژنوتیپ گندم در سه بلوک در سال زراعی 90-1389 به اجرا درآمد. همچنین برای محاسبه پارامترهای شاخص تنش آبی، ژنوتیپ‌های‌ مورد نظر در شرایط آبیاری تکمیلی در نزدیک‌ترین فاصله با آزمایش قبل کشت شدند. دمای پوشش سبز در مراحل گلدهی و اوایل خمیری شدن اندازه‌گیری و شاخص تنش آبی گیاه (CWSI) محاسبه شد. حد مبنای پائین با مفهوم شرایط بدون تنش (Tc-Ta=4.523-3.761×VPD; R2=0.92) و حد مبنای بالا با مفهوم حداکثر تنش (Tc-Ta=6 °C) و شرایط بدون تعرق برای گندم دیم تعیین شد. آستانه تنش آبی گیاه 4/0=CWSI محاسبه شد که عبور از آن 8 روز قبل از مرحله سنبله‌دهی اتفاق افتاد. در آستانه تنش آبی، مجموع 60 میلی‌متری از آب قابل استفاده تا عمق 50 سانتی‌متری پروفیل تخلیه شد. همچنین بین شاخص CWSI و عملکرد دانه در سطوح مختلف نیتروژن همبستگی منفی معنی‌داری (01/0>p) وجود داشت. مصرف نیتروژن منجر به کاهش تنش آبی و افزایش عملکرد دانه شد. در مصرف تقسیطی و پائیزی N30 بهترین ژنوتیپ‌ها از لحاظ عملکرد دانه و مقاومت به تنش آبی به ترتیب اوحدی و رصد و در مصرف تقسیطی و پائیزی N60 به ترتیب ژنوتیپ‌های Cereal4 و رصد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Determination of Soil and Plant Water Balance and Its Critical Stages for Rainfed Wheat Using Crop Water Stress Index (CWSI)

نویسندگان [English]

  • V. Feiziasl 1
  • A. Fotovat 1
  • A. Astaraei 1
  • A. Lakzian 1
  • M.A. Mousavi Shalmani 2
1 Ferdowsi University of Mashhad
2 Nuclear Science and Technology Research Institute, Atomic energy organization, Karaj
چکیده [English]

In order to determination of water stress threshold and dryland wheat genotypes water status in different nitrogen managements, this experiment was carried out in split split plot RCBD design in three replications in 2010-2011 cropping year. Treatments included: N application time (whole fertilization of N at planting time , and its split fertilization as 2/3 at planting time and 1/3 in early spring), N rates (0, 30, 60 and 90 kg ha-1) and 7 wheat genotypes. Also these genotypes were grown in supplemental irrigation condition for calculation of crop water stress index (CWSI) parameters. Canopy temperature (Tc) was measured in flowering and early milking stages. Crop water stress index (CWSI) was calculated. A non-water stressed baseline (lower baseline) were fitted as Tc-Ta=4.523-3.761×VPD; R2=0.92 and non-transpiring baseline (upper baseline) determined 6 ºC for rainfed wheat genotypes. Water stress threshold was 0.4 and crossing of that occurred 8 days before heading stage. In water stress threshold boundary, was depleted 60 mm available water from 0 to 50 cm soil depth. There was negative significant relationship (p >0.01) between CWSI and grain yield in all treatments and different nitrogen rates. Nitrogen application reduced water stress and increased grain yield of rainfed wheat genotypes. Ohadi and Rasad genotypes showed highest resistance to water stress and high grain yield production for N30 in split and planting time application, respectively. Cereal4 and Rasad genotypes were suitable for N60 application in split and planting time application, respectively.

کلیدواژه‌ها [English]

  • Crop water stress index (CWSI)
  • Water stress threshold
  • Soil and plant water balance
  • Nitrogen
  • Rainfed wheat genotypes
1- اسکندری ا. و محمودی ح. 1379. اثر جایگذاری کود بر عملکرد گندم دیم. مجله به‌نژدای نهال و بذر. جلد 2، شمار 17. ص 215-203.
2- تدین م. و امام ی. 1386. اثر آبیاری تکمیلی و مقدار فراهمی آب بر عملکرد، اجزای عملکرد و برخی صفات فیزیولوژیک دو رقم گندم دیم. مجله علوم و فنون کشاورزی و منابع طبیعی. جلد 11، شماره 42. ص 156-145.
3- توکلی ع. 1385. ارزیابی زراعی و اقتصادی (بودجه‌بندی بخشی) مدیریت تک آبیاری گندم در شرایط خشکسالی. مجله علمی کشاورزی. جلد 29، شماره 1. ص 29-17.
4- توکلی ع. 1390. اثر تاریخ کاشت و ‌آبیاری محدود بر عملکرد و اجزای عملکرد پنج رقم گندم در مراغه. مجله تولید و فرآوری محصولات زراعی و باغی. جلد 2، شماره 6. ص 97-87.
5- فیضی اصل و.، کسرایی ر.، مقدم م. و ولیزاده غ. 1383. بررسی تشخیص کمبود و محدودیتهای جذب عناصر غذایی با استفاده از روش های مختلف با مصرف کودهای فسفر و روی برای گندم دیم رقم سرداری. مجله علوم کشاورزی و منابع طبیعی. جلد 11، شماره 3. ص 33-23.
6- فیضیاصل و. و ولیزاده غ. 1380. تعیین نیاز نیتروژن و فسفر گندم رقم سبلان در شرایط دیم و آبیاری تکمیلی. مجله علوم زراعی ایران. جلد 3، شماره 4. ص 28-16.
7- مسلمی م.، روستائی م. و رشیدی و. 1391. ارزیابی عملکرد دانه و اجزای عملکرد در ژنوتیپ های گندم نان در رژیم‌های متفاوت رطوبتی. مجله به نژادی نهال و بذر. جلد 28، شماره 4. ص 630-611.
8- ملکوتی م.ج. و نبیغیبی م. 1376. تعیین حد بحرانی عناصر غذایی محصولات استراتژیک و توصیه صحیح کودی در کشور. انتشارات نشر آموزش کشاورزی. ص 56.
9- نخجوانی مقدم م.م. و قهرمان ب. 1387. ارزیابی دمای پوشش سبز جهت زمان بندی آبیاری و عملکرد گیاه گندم زمستانه. مجله علوم و صنایع کشاورزی، ویژه آب و خاک. جلد 22، شماره 1. ص 112-101.
10- Acevedo E., Silva P. and Silva H. 2002. Wheat growth and physiology. p 53-89. In: B.C. Curtis, S. Rajaram, H. Gomez Macpherson (eds). Bread wheat Improvement and Production. Cereals Officer, Crop and Grassland Service, FAO.
11- Ali Z.I. 2000. Morphophysiological Traits Associated with Moisture and Nitrogen Stresses in Some Wheat (Triticum aestivum L.) Genotypes. PhD Thesis, Gezira University, Sudan, p. 123.
12- Anjum S.A., Xie X., Wang L., Saleem M.F., Man C. and Lei W. 2011. Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research. 6(9): 2026-2032.
13- Ayeneh A., Van Ginkel M., Reynolds M.P. and Ammar K. 2002. Comparison of leaf, spike, peduncle, and canopy temperature depression in wheat under heat stress. Field Crops Res. 79: 173–184.
14- Badaruddin M., Reynolds M.P. and Ageeb O.A.A. 1999. Wheat management in warm environments: effect of organic and inorganic fertilizers, irrigation frequency, and mulching. Agron. J. 91: 975-983.
15- Bucks D., Nakavamma F., French O., Regard W. andAlexander W. 1985. Irrigated guayule evapotranspiration and plant water stress. Agricultural water management. 10: 61-79.
16- Burke J.J. 1990. Variation among species in the temperature dependence of the reappearance of variable fluorescence following illumination.Plant Physiol.93: 652–656.
17- Copeland S. 1989. Soil water potential as related to the crop water stress index of irrigated cotton. M. S. thesis, Dept. of Agricultural and Biosystems Engineering, University of Arizona, Tucson, AZ. Page 107.
18- Elbashier E.M.E., Tahir I.S.A., Saad A.I. and Ibrahim M.A.S. 2012. Wheat genotypic variability in utilizing nitrogen fertilizer for a cooler canopy under a heat-stressed irrigated environment. African Journal of Agricultural Research. 7(3): 385-392.
19- Feiziasl V., Jafarzadeh J., Pala M. and Mosavi S.B. 2009. Determination of micronutrient critical Levels by plant response column order procedure for dryland wheat (T. aestivum L.) in Northwest of Iran. Inter. J. Soil Sci. 4(1): 14-19.
20- Fitzgerald G.J., Rodriguez D., Christensen L.K., Belford R., Sadras V.O. and Clarke T.R. 2006. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agri. 7 (4): 233-248.
21- Gardner B.R. and Shock C.C. 1989. Interpreting the Crop Water Stress Index. ASAE Paper No: 89-2642.
22- Gontia N.K. and Tiwari K.N. 2008. Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry. Agricultural Water Management. 95(10): 1144-1152.
23- Gonzalez-Dugo M.P., Moran M.S., Mateos L. and Bryant R. 2005. Canopy temperature variability as an indicator of crop water stress severity. Irrig. Sci. 24: 233-240.
24- Hundal S.S. 2004. Climatic changes and their impact on crop productivity vis-a- vis mitigation and adaptation strategies. pp 148-153. In proc. of workshop “Sustainable Agricultural Problems and Prospects” Punjab Agricultural University, Ludhiana, India.
25- Hurd E.A. 1976. Plant breeding for drought resistance. In: T. T. Kozlowski (ed.) water deficits and plant growth. P: 317-354. Academic press, New York.
26- Idso S.B., Jackson R.D., Jr. Pinter P.J., Reginato R.J. and Hatfield J.L. 1981. Normalizing the stress-degree-day parameter for environmental. variability. Agric. Meteorol. 24(1): 45-55.
27- Idso S.B. 1982. Non-water-stressed baselines: a key to measuring and interpreting plant water stress. Agricultural Meteorology. 27:59-70.
28- Irmak S., Istanbulluoglu E. and Irmak A. 2008. An Evaluation of Evapotranspiration model complexity against performance in comparison with Bowen Ration Energy Balance measurements. Transactions of the ASABE. 51(4):1295-1310.
29- Jackson R.D., Idso S.B., Reginato R.J. and Pinter P.J. 1981. Canopy temperature as a crop water stress indicator. Water Resour Res.17(4):1133–1138.
30- Jackson R.D. 1982. Canopy temperature and crop water stress. In D. Hillel Ed. Advances in Irrigation, Vol 1, pp43-85.
31- Jackson R.D. and Pinter P.J., Jr. 1981. Detection of water stress in wheat by measurement of reflected solar and emitted thermal IR radiation. Int. Colloq.Spectral Signatures Objects Remote Sens.,1982, pp.399-406.
32- Jiang Y. and Huang B. 2000. Effects of drought or heat stress alone and in combination on kentucky bluegrass.Crop Sci.40: 1358–1362.
33- Jia-Zhou C., Li-Rong L., Guo L. and Shuang W. 2010. Effects of nitrogen fertilization on crop water stress index of summer maize in red soil. J. Plant Nutrition and Fertilizer Science. 16(5): 1114-1119.
34- Keener M.E. and Kircher P.L. 1983. The use of canopy temperature as an indicator of drought stress in humid regions. Agric. Forest Meteorol. 28: 339–349.
35- Kırnak H., Çopur O., Doan E., Bahçeci I., Demir S. and Tonkaz T. 2005. Evaluation of relationship between crop water stress index and generative-fiber characteristics of cotton (in Turkish). GAP IV. Tarım Kong., Sanlıurfa, 21-23 September, pp. 1164-1171.
36- Koksal E.S., Candogan B.N., Yildirim Y.E. and Yazgan S. 2010. Determination of water use and water stress of cherry trees based on canopy temperature, leaf water potential and resistance. Zemdirbyste=Agriculture. 97(4): 57-64.
37- Lawlor D.W. and Cornic C. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25:275-294.
38- Lopez L.R., Arteaga R.R., Sanchez C.I., Ojeda B.W. and Gonzalez L.V. 2011. Evapotranspiration and Crop Water Stress Index in Mexican Husk Tomatoes (Physalis Ixocarpa Brot). pp: 187-210. In: Evapotranspiration-From Measurements to Agricultural and Environmental Applications. Gerosa G (Ed). Intechwem.Org.
39- Meijer A.D. 2004. Characterizing a Crop Water Stress Index for Predicting Yield in Corn. A thesis submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Master of Science. Crop Science. Pages 141.
40- Mohammadi M., Karimizadeh R. and Naghavi M.R. 2009. Selection of Bread Wheat Genotypes against Heat and Drought Tolerance Based on Chlorophyll Content and Stem Reserves. J. Agric. Soc. Sci. 5 (5): 119–122.
41- Nielsen D.C. and Halvorson A.D. 1991. Nitrogen fertility influences on water stress and yield of winter wheat. Agron. J. 83:1065-1070.
42- O’Shaughnessy S.A., Evett S.R., Colaizzi P.D. and Howell T.A. 2012. A crop water stress and time threshold for automatic irrigation scheduling of grain sorghum. Agric. Water Manage. 107:122-132.
43- Pinter P.J., Zipoli G., Reginato R.J., Jackson R.D., Idso S.B. and Hohman J.P. 1990. Canopy temperature as an indicator of differential aater use and yield performance among wheat cultivars. Agricultural Water Management. 18: 35-48.
44- Rodriguez D., Sadras V.O., Christensen L.K., and Belford R. 2005. Spatial assessment of the physiological status of wheat crops as affected by water and nitrogen supply using infrared thermal imagery. Australian Journal Agricultural Research. 56: 983–993.
45- Schneekloth J.P. and Nielsen D.C. 2011. Irrigation Capacity Impact on Limited Irrigation Management and Cropping Systems. Proceedings of the 23rd Annual Central Plains Irrigation Conference, Burlington, CO., February 22-23, 2011, Available from CPIA, 760 N. Thompson, Colby, Kansas.
46- Sneha C., Santhoshkumar A.V. and Sunil K.M. 2013. Quantifying water stress using crop water stress index in mahogany (Swietenia macrophylla King) seedlings. Current Sci. 104 (3): 348-351.
47- Stegman E.C. and Soderlund M. 1992. Irrigation scheduling of spring wheat using infrared thermometry. Trans-ASAE. St. Joseph, MI. 35:143-152.
48- Tao F., Yokozawa M., Zhang Z., Hayashi Y., Gerassl H. and Fu C. 2004. Variability in climatology and agricultural production in China in association with the East Asia Summer monsoon and El Niֿno Southern Oscillation. Climate Res. 28: 23-30.
49- Tilling K., Leary G.J.O., Ferwerda J.G., Jones S.D., Fitzgerald G.J., Rodriguez D. and Belford R. 2007. Remote sensing of nitrogen and water stress in wheat. Field Crops Res. 104: 77-85.
50- Ünlü M., Kanber R., Kapur B., Tekin S. and Koç D.L. 2011. The crop water stress index (CWSI) for drip irrigated cotton in a semi-arid region of Turkey. African Journal of Biotechnology. 10(12): 2258-2273.
51- Wiegand C.L. and Cuella J.A. 1981. Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Sci., 21: 95-101.
52- Wirya-Alongkorn W., Spreer W., Ongaprasert S., Spohrer K., Pankasemsuk T. and Müller J. 2013. Detecting drought stress in longan tree using thermal imaging. Maejo Int. J. Sci. Technol. 7(01): 166-180.
53- Yuan G., Luo Y., Sun X. and Tang D. 2004. Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain. Agricultural Water Management. 64: 29–40.
54- Zhang H.H, Rong H. M., Young-Huan L.I.U., Fei L.I., Cui-Ping W.U., Bin Z. and Ying W. X. 2008. Effect of high temperature stress at late grain filling stage and nitrogen and sulfur fertilization on wheat grain yield and quality. Chinese Journal of Ecology 27(02): 162 –166.
55- Zia S., Spohrer K., Du W., Spreer W., Romano G., He X., and Müller J. 2011. Monitoring physiological responses to water stress in two maize varieties by infrared thermography. International Journal of Agricultural and Biological Engineering. 4(3): 7-15.
CAPTCHA Image