تخمین ضرایب چولگی توزینی جهت برآورد سیلاب طرح (مطالعه موردی: استان آذربایجان غربی)

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه ارومیه

چکیده

برای تعیین دبی با دوره های بازگشت مختلف در مطالعات هیدرولوژیک، برآورد ضریب چولگی با دقت قابل قبول مورد نیاز می‌باشد. برآورد چولگی جامعه در مناطق مختلف، زمانی بهبود می‌یابد که برای محاسبه آن از متوسط وزن دار چولگی نمونه و چولگی تعمیم یافته استفاده شود. استان آذربایجان غربی دارای سه منطقه هیدرولوژیک متفاوت می‌باشد. شمال استان جزو حوضه آبریز رودخانه ارس، مرکز استان جزو حوضه آبریز دریاچه ارومیه و قسمتی از جنوب استان جزو حوضه آبریز رودخانه زاب می‌باشد. در تحقیق حاضر، سه روش توسعه نقشه‌های هم چولگی با در نظر گرفتن استان آذربایجان غربی به صورت متحدالشکل، نقشه هم چولگی با در نظر گرفتن 3 منطقه هیدرولوژیک و میانگین وزن دار چولگی برای مناطق هیدرولوژیک سه گانه مورد استفاده قرار گرفتند تا ضرایب چولگی تعمیم یافته 67 ایستگاه هیدرومتری با طول دوره‌های آماری متفاوت (16 الی 62 سال) برآورد گردند. نتایج نشان دادند که بیش‌تر مناطق استان، دارای ضریب چولگی منفی می‌باشند. هم‌چنین نتایج نشان داد که در بین مناطق هیدرولوژیک سه‌گانه استان، منطقه هیدرولوژیک رودخانه زاب دارای کمترین خطا در بین مناطق مورد بررسی می‌باشد. در بین روش‌های توسعه‌ نقشه‌های هم‌چولگی نیز نقشه هم چولگی توسعه یافته شده به طریق تقسیم‌بندی استان به مناطق هیدرولوژیک سه گانه با میانگین مربعات خطا‌ی چولگی تعمیم‌یافته برابر با 0.55، نسبت به روش های دیگر، از دقت بالاتری برخوردار می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Weighted Skew Coefficient for Design Flood Approximation (Case Study: West Azerbayjan, Islamic Republic of Iran)

نویسندگان [English]

  • J. Behmanesh
  • M. Hesami Afshar
Urmia University
چکیده [English]

Introduction: The frequency of floods is one of the characteristics of river flow statistics so thatanalyzing it has an important role to assess the hydrological and economical water resources projects. For determining flood frequency, the estimation of accurate skewness coefficient of annual peak discharges is required. Estimation of population skew for different regions will be improved when it is computed from the weighted average of the sample skew and an unbiased generalized skew estimate. There are different ways to develop a generalized skewness coefficient. The goal of this study is to analyze the methods for generating unbiased generalized skew coefficient and select the best method for creating the weighted generalized skewness coefficient.
Materials and Methods: In the present study, to calculate weighted generalized skewness coefficient, initially the hurst index is calculated to analyze the adequacy of time series length. The case study of the present research (West Azerbaijan, Iran) has three basins containing different hydrologic regions. These three basins are: the Aras River, Urmia Lake and Zab River basins. Therefore, various hydrologic regions, with the help of provincial border and the borders between sub-basins, are combined to form three larger hydrologic regions.After the formation of three larger hydrologic regions, the homogeneity of skewness variance of annual peak discharge of hydrometric stations within each three hydrological groups are tested using theleuven statistical parameter. Also the Dunnett test is applied to identify areas whichare significantly differentiated with other hydrologic regions. To develop the generalized skewness coefficient of 67 hydrometric stations with different statistical periods (16 to 62 years), three methods containing statewide map of skewness in West Azerbaijan, skewness map with including three hydrologic regions, and weighted average of skewness for the three hydrologic regions were used. Finally, after calculating the errors of three methods of generalized skewness development using Mean Square Error (MSE) coefficient, a weighted technique is used to calculate the weighted generalized skewness using sample skewness and the best generalized skewness (the one which has the least error) and their corresponding errors.
Results and Discussion: The results showed that most parts of the province have negative skewness values. The Hurst test results showed that the hurst coefficient is greater than 0.5 for all 67 hydrometric stations and lengthening of time series for the analysis is not required. Also, the results of the leuven statistical parameter showed that the homogeneous assumption is true for hydrological groups. Therefore, there is no reason for the variance heterogeneity. Moreover, the results of the Dunnett test stated that statistically, skewness means within the hydrological groups are not different. An error analysis showed that the Zab river basin had the least error amongthe studied basins. Among the methods studied for developing the skewness map, the division of the province into three hydrologic regions hada higher accuracy (MSE of Generalized skew coefficient = 0.55) than the other methods. However, this difference was very marginal. According to skewness maps, it can be seen that by considering hydrologic regions, the errors can be reduced in all three hydrologic regions. As the MSE in areas A and B is lower than the provincial level and in the region C, the error rate is close to zero. However, it should be noted that the number of hydrometric stations in region C, are much lower than other parts of the study area and this can be one of the reasons for error reduction in this area.
Conclusions: Considering that the aim of this study was to evaluate the accuracy of the generalized skewness estimating methods in the calculation of weighted generalized skewness coefficients, it has been seen that a regional approach, in addition to reducing the error rate, the fracture lines on the skewness map of the annual peak discharges can be reduced. Unlike the regional approach, the averaging method has shown worse results in all three regions.We may conclude that the sample skewness coefficient alone can bring better results than the averaging approach. Also, by comparing errors in areas A, B, and C, it can be concluded that with increment in area of hydrologic regions and inadequate spatial distribution of hydrometric stations, the error rate increases.

کلیدواژه‌ها [English]

  • Generalized skew coefficient
  • Homogeneity of hydrologic regions
  • Flood frequency
- Atiem I., and Harmancioglu N. 2006. Assessment of Regional Floods Using L-Moments Approach: The Case of the River Nile. Water Resources Management, 20:723-747.
2- Davies E.G.R., and Simonovic S.P. 2011. Global water resources modeling with an integrated model of the social-economic-environmental system. Advances in Water Research, 34(6):684-700.
3- De Muth J.E. 2006. Basic Statistics and Pharmaceutical Statistical Applications, Second Edition, Taylor & Francis.
4- Dunnett C.W. 1980. Pairwise Multiple Comparisons in the Unequal Variance Case. Journal of the American Statistical Association, 75:796-800.
5- Feaster T.D., Gotvald A.J., and Weaver J.C. 2014. Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014-5030, 104 p.
6- Griffis V.W., and Stedinger J. R. 2009. Log-Pearson Type 3 Distribution and Its Application in Flood Frequency Analysis. III: Sample Skew and Weighted Skew Estimators. Journal of Hydrological Engineering, 14(2):121-130.
7- Griffis V.W., Stedinger J.R., and Cohn T.A. 2004. LP3 quantile estimators with regional skew information and low outlier adjustments. Water Resources Research, 40:W07503.
8- Gruber A.M., and Stedinger J.R. 2008. Models of LP3 regional skew, data selection, and Bayesian GLS regression. Proceedings of World Environmental & Water Resources Conference, 2008. eds., ASCE, Reston, Va. Paper No: 596.
9- Hosking J.R.M., and Wallis J.R. 1993. Some statistics useful in regional frequency analysis. Water Resources Research, 29(2):271-281.
10- Hsu N.S., Cheng W.C., Cheng W.M., Wei C.C., and Yeh W.W.G. 2008. Optimization and capacity expansion of a water distribution system. Advances in Water Research, 31(5):776-786.
11- Hydrology Committee of the Water Resources Council. 1976. Guidelines for determining flood-fiow frequency, Bull. 17, U.S. Water Resour. Counc., Washington, D. C.
12- Karamouz M., and Araghinejad Sh. 2010. Advanced hydrology. Amirkabir University Press, second edition. (in Persian)
13- Landers M., and Van Wilson K. 1991. Flood characteristics of Mississippi Streams: U.S. Geological Survey Water-Resources Investigations Report:91-4037
14- Li M., Shao Q., Zhang L., and Chiew F.H.S. 2010. A new regionalization approach and its application to predict flow duration curve in ungauged basins. Journal of Hydrology, 389(1-2):137–145.
15- Lumia R., and Baevsky Y. 2000. Development of a contour map showing generalized skew coefficients of annual peak discharges of rural, unregulated streams in New York excluding long island. U.S.Geological survey. Water resources investigations report:00-4022.
16- Mahmoud M.I., Gupta H.V., and Rajagopal S. 2011. Scenario development for water resources planning and watershed management: methodology and semi-arid region case study. Environmental Modelling & Software, 26:873-885.
17- Martins E.S., and Stedinger J.R. 2002. Cross correlations among estimators of shape. Water Resources Research, 38(11):1252
18- Masih I., Uhlenbrook S., Maskey S., and Ahmad M.D. 2010. Regionalization of a conceptual rainfall–runoff model based on similarity of the flow duration curve: A case study from the semi-arid Karkheh basin Iran. Journal of Hydrology, 391:188-201.
19- Mello C.R., Lima J.M., Silva A.M., and Lopes D. 2003. Initial abstraction of small watersheds of ephemeral flood. Revista Brasileira de Engenharia Agricola e Ambiental, 7(3):494-500.
20- Olkin I. 1960. Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling. Stanford University Press.
21- Pandey G.R., and Nguyen V.T.V. 1999. A comparative study of regression based methods in regional frequency analysis. Journal of Hydrology, 225:92-101.
22- Pope B., Tasker G.D., and Robbins J.C. 2001. Estimating the magnitude and frequency of floods in rural basins of North Carolina-revised. Water-Resources Investigations Report No: 01-4207.
23- Rasmussen P., and Perry C.A. 2000. Estimation of peak streamflows for unregulated rural streams in Kansas. Water-Resources Investigation Report No: 00-4079.
24- Reis J.R., Stedinger J.R., and Martins E.S. 2003. Bayesian GLS regression with application to LP3 regional skew estimation. p. 1-10. Proceedings of World Water and Environ. Resources Congress, 23-26 Jun. 2003. ASCE, Reston, Va., Philadelphia, Pennsylvania, United States.
25- Reis Jr., Stedinger J.R., and Martins E.S. 2004. Operational Bayesian GLS regression for regional hydrologic analyses. p. 1-10. Proceedings of World Water and Environmental Resources Congress 2004, June 27-July 1. 2004. ASCE, Reston, Va., Salt Lake City, Utah, United States.
26- Reis Jr., Stedinger J.R., and Martins E.S. 2005. Bayesian generalized least squares regression with application to log Pearson type 3 regional skew estimation. Water Resources Research, 41:W10419.
27- Saf B. 2009. Regional flood frequency analysis using L-moments for the West Mediterranean Region of Turkey. Water Resources Management, 23(3):531-551.
28- Samuel J., Coulibaly P., and Metcalfe R.A. 2012. Evaluation of future flow variability in ungauged basins: Validation of combined methods. Advances in Water Resources, 35:121-140.
29- Seckin N., Cobaner M., Yurtal R., and Haktanir T. 2013. Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: The Case of East Mediterranean River Basin, Turkey. Water Resources Management, 27:2103-2124.
30- Sehlke G., Hayes D.F., and Stevens D.K. 2004. Critical Transitions in Water and Environmental Resources Management. Proceedings of World Water and Environmental Resources Congress, June 27-July 1. 2004. eds., ASCE, Reston, Va. Salt Lake City, Utah.
31- Tahmasebipour N., Sharifi F., Mahdavi M., and Pezeshk H. 2005. Regionalization of flood estimation by generalized skewness method in some of Karkheh sub – basins. Pajouhesh & Sazandegi, 74: 2-10 (in Persian with English abstract)
32- Tasker G.D. 1978. Flood-frequency analysis with a generalized skew coefficient: Water Resources Research, 14(2):373-376.
33- Tasker G.D., and Stedinger J.R. 1986. Regional skew with weighted LS regression. Journal of Water Resources Planning and Management, 112(2):225-237.
34- Tsakiris G., Nalbantis I., and Cavadias G. 2011. Regionalization of low flows based on canonical correlation analysis. Advances in Water Resources, 34:865-872.
35- Tucci C.E.M. 1998. Hydrological Models. ABRH Publisher UFRGS. Porto Alegre.
36- Wurbs R., and James W. 2000. Water Resources Engineering. Prentice Hall.
CAPTCHA Image