خصوصیات فیزیکوشیمیایی، میکرومورفولوژیکی و کانی‌شناسی رسی خاک‌های منطقه بردسیر متأثر از سازندهای زمین‌شناسی، ژئومورفولوژی و اقلیم

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه شهید باهنر کرمان

چکیده

تشکیل و تکامل خاک‌ها در مناطق خشک و نیمه خشک شدیداً تحت تأثیر سازندهای زمین شناسی و ژئومورفولوژی منطقه می باشد. نهشته های جوان کواترنری، مارن های نئوژن و کرتاسه از مهم‌ترین و گسترده ترین سازندهای زمین شناسی در منطقه بردسیر می باشند. هدف از این مطالعه بررسی تأثیر سازندهای زمین شناسی و همچنین اقلیم و سطوح ژئومورفولوژی بر ویژگی های فیزیکوشیمیایی، کانی-شناسی و میکرومورفولوژی خاک های منطقه می باشد. در این مطالعه 11 خاکرخ متأثر از این سازندها و در رژیم های رطوبتی اریدیک، مرز اریدیک- زریک و زریک و بر روی سطوح ژئومورفیک پدیمنت پوشیده و سنگی، دشت های سیلابی و دامنه ای، سطوح حدواسط، باهادا و تراس ها حفر شد. حداکثر مقدار گچ در خاک های واقع بر سازندهای کواترنری و مارن های کرتاسه و حداکثر مقدار کربنات کلسیم در سازندهای نئوژن مشاهده شد. خاک های متکامل مانند آلفی سول ها در رژیم رطوبتی زریک و سطوح ژئومورفولوژی دشت دامنه ای و خاک-های انتی سول در رژیم رطوبتی اریدیک و سطوح ژئومورفولوژی پدیمنت سنگی تشکیل شده اند. کانی های رسی مشاهده شده در این منطقه شامل اسمکتیت، ورمی‌کولیت، ایلیت، کائولینیت و کلریت می باشد که با حرکت از رژیم رطوبتی اریدیک به زریک نسبت اسمکتیت به ایلیت افزایش یافت. مطالعات میکرومورفولوژیکی نیز نشان داد با حرکت از رژیم رطوبتی اریدیک به زریک از بلورهای گچ کاسته شده و یا اثری از آن ها دیده نمی‌شود و بالعکس بر ضخامت پوشش های رس و بلورهای کلسیت افزوده شد. همچنین این مطالعات نشان داد عوارض خاک ساخت گچی عمده عوارض مشاهده شده در سازندهای کرتاسه و انواع عوارض خاک ساخت آهکی عمده عوارض مشاهده شده در سازندهای نئوژن می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Physicochemical Properties, Micromorphology and Clay Mineralogy of Soils Affected by Geological Formations, Geomorphology and Climate

نویسندگان [English]

  • A. Bayat
  • M. H. Farpoor
  • A. Jafari
Shahid Bahonar University of Kerman
چکیده [English]

Introduction: Soil genesis and development in arid and semi-arid areas are strongly affected by geological formations and geomorphic surfaces. Various morphological, physical, and geochemical soil properties at different geomorphic positions are usually attributed to different soil forming factors including parent material and climate. Due to variations in climate, geological formations (Quaternary, Neogene and Cretaceous) and geomorphology, the aim of the present research was the study of genesis, development, clay mineralogy, and micromorphology of soils affected by climate, geology and geomorphology in Bardsir area, Kerman Province.
Materials and Methods: The study area, 25000 ha, starts from Bardsir and extends to Khanesorkh elevations close to Sirjan city. The climate of the area is warm and semi-arid with mean annual temperature and precipitation of 14.9 °C and 199 mm, respectively. Soil moisture and temperature regimes of the area are aridic and mesic due to 1:2500000 map, provided by Soil and Water Research Institute. Moving to west and southwest, soil moisture regime of the area changes to xeric with increasing elevation. Using topography and geology maps (1:100000) together with Google Earth images, geomorphic surfaces and geologic formations of the area were investigated. Mantled pediment (pedons 1, 3, 7, and 8), rock pediment (pedon 2), semi-stable alluvial plain (pedon 6), unstable alluvial plain (pedon 5), piedmont plain (pedons 9 and 11), intermediate surface of alluvial plain and pediment (pedon 4), and old river terrace (pedon 10) are among geomorphic surfaces investigated in the area. Mantled pediment is composed of young Quaternary sediments and Cretaceous marls. Rock pediments are mainly formed by Cretaceous marls. Quaternary formations are dominant in alluvial plains. Alluvial terraces and intermediate surface of alluvial plain and pediment are dominated by Neogene conglomerates. Siltstone, sandstone, and Neogene marls together with Neogene conglomerates are among dominant geological formations of piedmont plain. Eleven pedons affected by young Quaternary sediments, Neogene and Cretaceous marls in aridic, aridic border to xeric, and xeric moisture regimes on above-mentioned geomorphic surfaces were described and sampled using Natural Resources Conservation Service (2012) guideline. Physicochemical properties, clay mineralogy, and micromorphology of soil samples investigated and soils were classified by Soil Taxonomy (2014) and WRB (2015) systems.
Results and Discussion: Calcic, gypsic, argillic, and cambic diagnostic horizons investigated after field and laboratory studies. Typic Calcigypsids, Lithic Torriorthents, Typic Haplogypsids, Typic Haplocalcids, Typic Torrifluvents, Sodic Haplocambids, Typic Calciargids, and Xeric Haplocalcids subgroups were found using Soil Taxonomy (2014) system. Gypsisols, Calcisols, Luvisols, Cambisols, and Regosols reference soil groups identified by WRB (2015) classification system. Developed Alfisols, formed on piedmont plain geomorphic surface in xeric moisture regime. On the other hand, Entisols formed on rock pediments with aridic moisture regime. Soils in aridic moisture regimes were little developed with gypsic horizon, and where calcic horizon was formed, it was near the surface. Moving to the west with increasing humidity, gypsum was leached from the pedon and clay illuviation caused argillic horizon to be formed. Formation of Btk horizon in pedon 9 was attributed to a more paleoclimate. The maximum gypsum content of 44.7 % (gypsiferous soils) was found in soils affected by Quaternary formations and Cretaceous marls, but the maximum calcium carbonate (44 %, calcareous soils) was investigated in soils formed on Neogene conglomerate formations. Moreover, the maximum sodium adsorption ratio (SAR) content (29.2 (mmol(±) L-1)0.5) was determined for soils on unstable surface of alluvial plain. Smectite, vermiculite, illite, kaolinite, and chlorite clay minerals were investigated and smectite to illite ratio increased moving from aridic to xeric moisture regimes that prove the pedogenic source of smectite from weathering of illite. Coating and infilling of calcium carbonate, lenticular and interlocked plates and infillings of gypsum, and clay coatings were observed during micromorphological investigations. Micromorphological observations also showed that gypsum crystals decreased and calcite crystals and thickness of clay coatings increased from aridic to xeric moisture regimes. The minimum amount of gypsum crystals was found in Neogene formations. The results also showed that gypsum pedofeatures are dominant in Cretaceous formations, but calcium carbonate pedofeatures are the main features of Neogene formations. Due to presence of animal voids (channel, regular and star-shaped vughs, chamber, and vesicles), spongy microstructure was formed in agricultural lands.
Conclusion: Results of the research showed the important role of parent material, climate, and geomorphic surface on genesis and development of soils in Bardsir area.

کلیدواژه‌ها [English]

  • Argillic
  • Central Iran
  • Climolitosequence
1- Banaie M.H. 1998. Soil Moisture and Temperature Regimes Map of Iran. Soil and Water Research Institute of Iran, Iran.
2- Birkeland P.W. 1999. Soils and Geomorphology. Oxford University Press, New York.
3- Blank R.R., and Fosberg M.A. 1990. Micromorphology and classification of secondary calcium carbonate accumulations that surround or occur on the underside of coarse fragments in Idaho (U.S.A.). p. 341-346. In L.A. Douglas (ed.) Soil Micromorphology: A Basic and Applied Science. Developments in Soil Science. Part 19. Elsevier, Amsterdam.
4- Bouyoucos G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54:464-465.
5-Boyadgiev T.G. 1974. Contribution to the Knowledge of Gypsiferous Soils. AGON/SF/SYR/67/522. FAO, ROM.
6- Cody R.D., and Cody A.M. 1988. Gypsum nucleation and crystal morphology in analog salin terrestrial environments. Journal of Sedimentary Petrology, 58:247-255.
7- Egli M., Merkli Ch., Sartori G., Mirabella A., and Plotze M. 2008. Weathering, mineralogical evolution and soil organic matter along a Holocene soil toposequence developed on carbonate-rich materials. Geomorphology, 97:675-696.
8- Fanning D.S., Keramids V.Z., and El-Desokey M.A. 1992. Micas. p. 552-634. In J.B. Dixon and S.B. Weed (ed.) Minerals in Soil Environments. SSSA Book Ser. L. SSSA, Madision, WI.
9- Farpoor M.H., Eghbal M.K., and Khademi H. 2003. Genesis and micromorphology of saline and gypsiferous Aridisols on different geomorphic surfaces in Nough area, Rafsanjan. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 7(3):71-93. (in Persian with English abstract)
10- Gunal H., and Ransom M.D. 2006. Genesis and micromorphology of loess-derived soils from central Kansas. Catena, 65:222-236.
11- Irmak S., Surucu A.K., and Aydogdu I.H. 2007. Effects of different parent material characteristics of soils in the arid region of Turkey. Pakistan Journal of Biological Sciences, 10:528-536.
12- IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014, update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. FAO, Rome.
13- Jackson M.L. 1975. Soil Chemical Analysis Advanced Course. University of Wisconsin, College of Agriculture, Department of Soil Science, Madison, WI.
14- Khademi H., and Mermut A.R. 1999. Submicroscopy and stable isotope geochemistry of carbonates and associated palygorskite in Iranian Aridisols. European Journal of Soil Science, 50:207-216.
15- Khormali F., and Abtahi A. 2003. Origin and distribution of clay minerals in calcareous arid and semiarid soils of Fars Province, southern Iran. Clay Minerals, 38:511-527.
16- Khormali F., Abtahi A., Mahmoodi S., and Stoops G. 2003. Argillic horizon development in calcareous soils of arid and semiarid regions of southern Iran. Catena, 53:273-301.
17- Khresat S.A., and Qudah E.A. 2006. Formation and properties of aridic soils of Azraq Basin in northeastern Jordan. Journal of Arid Environments, 64:116-136.
18- Kittric J.A., and Hope E.W. 1963. A procedure for the particle size sepration of soil for x-ray diffraction analysis. Soil Science Society of America Journal, 96:312-325.
19- Mahmoodi S., Mogheiseh E., and Heidari A. 2006. Morphology of gypsum and halite in some gypsum rich soils of Bam region (southeast Iran). Geophysical Research Abstracts, 8:23-61.
20- Moazallahi M., and Farpoor M.H. 2009. Soil micromorphology and genesis along a climotoposequence in Kerman Province, central Iran. Australian Journal of Basic and Applied Sciences, 3(4):4078-4084.
21- Nameless. 2003. Gazetteer Settlements of Kerman Province, Bardsir City. Geography Organization of the Ministry of Defense and Armed Forces Logistics of Iran, 3:1-40. (in Persian)
22- Nelson R.E. 1982. Carbonate and gypsum. p. 181-196. In A.L. Page et al. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
23- Nelson D.W., and Sommers L.E. 1982. Total carbon, organic carbon, and organic matter. p. 539-577. In A.L. Page et al. (ed.) Methods of Soil Analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
24- Owliaie H.R., Abtahi A., and Heck R.J. 2006. Pedogenesis and clay mineralogical investigation of soils formed on gypsiferous and calcareous materials on transect, southwestern Iran. Geoderma, 134:62-81.
25- Page S.E., Wust R.A.J., Wriss D., Rieley J.O., Shotyk W., and Limins S.2004. A record of late Pleistocene and Holocene carbon accumulation and implication for past, present and future carbon dynamics. Journal of Quarternary Science, 19:625-635.
26- Rabenhonst M.C., and Wilding L.P. 1986. Pedogenesis on the Edwards plateau, Texas: formation and occurrence of diagnostic subsurface horizons in a climosequence. Soil Science Society of America Journal, 50:684-692.
27- Salehi M.H., Khademi H., and Karimian Eghbal M. 2003. Identification and genesis of clay minerals soils from Farrokhshahr area, Chaharmahal and Bakhtiari Province. Journal of Science and Technology of Agriculture and Natural Resources, Water and Soil Science, 7(1):73-90. (in Persian with English abstract)
28- Sanjari S., Farpoor M.H., Eghbal M.K., and Esfandiarpoor Boroujeni I. 2011. Genesis, micromorphology and clay mineralogy of soils located on different geomorphic surfaces in Jiroft area. Journal of Water and Soil, 25(2):411-425. (in Persian with English abstract)
29- Schoeneberger P.J., Wysocki D.A., Benham E.C., and Soil Survey Staff. 2012. Field Book for Describing and Sampling Soils. Natural Resources Conservation Service, National Soil Survey Center, Lincoln, NE.
30- Shankar M., and Achyuthan H. 2007. Genesis of calcic and petrocalcic horizons from Coimbatore, Tamil Nadu: micromorphology and geochemical studies. Quaternary International, 175:140-154.
31- Sheklabadi M. 2000. Relative Erodibility of Soils Affected by some Geological Formations and its Relationship with some Physical and Chemical Properties of Soils in the Golabad Watershed. M.Sc. Thesis of Soil Science, Isfahan University of Technology. (in Persian with English abstract)
32- Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th edition. USDA-Natural Resources Conservation Service, Washington, DC.
33- Stoops G. 2003. Guidelines for the Analysis and Description of Soil and Regolith Thin Sections. SSSA, Madison, WI.
34- Sumner M.E., and Miller W.P. 1996. Cation exchange capacity and exchange coefficients. p. 1201-1229. In D.L. Sparks (ed.) Methods of Soil Analysis. Part 3. Agron. Monogr. 5. ASA and SSSA, Madison, WI.
CAPTCHA Image