تأثیر قارچ‌ میکوریز آربسکولار و تنش خشکی بر جذب برخی عناصر غذایی ماکرو توسط سه ژنوتیپ تره با مشخصات ریشه‌ای متفاوت

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه کشاورزی و منابع طبیعی رامین اهواز

2 ?

چکیده

در یک آزمایش گلدانی در سال 1389 در گلخانه دانشگاه کشاورزی و منابع طبیعی رامین، برای اولین بار نقش ریخت‌شناسی ریشه سه ژنوتیپ تره با حضور قارچ‌های میکوریز-آربسکولار در شرایط خشکی بر جذب عناصر غذایی فسفر،کلسیم، پتاسیم در برگ و ریشه سه ژنوتیپ تره مطالعه گردید. این آزمایش با سه سطح رطوبتی خاک (آبیاری پس از تخلیه 40، 60 و 80 درصد آب قابل استفاده گیاه در خاک)، دو سطح میکوریزا (وجود و عدم وجود قارچ گلوموس اینترارادیسس) و سه ژنوتیپ تره شامل: شادگان (با ریشه‌های کم انشعاب، کوتاه و نازک)، اصفهان (با ریشه‌های منشعب و بلند) و تره فرنگی (با ریشه‌های کم انشعاب، کوتاه و ضخیم) به صورت فاکتوریل در قالب طرح کامل تصادفی در چهار تکرار اجرا گردید. نتایج نشان داد که با افزایش تنش خشکی از مقدار کل عناصر فسفر، پتاسیم و کلسیم کاسته می‌شود، ولی میزان این عناصر با توجه به نوع توده، ساختار ریخت‌شناسی ریشه‌ای و هم‌چنین در برگ و ریشه، متفاوت بود. در تمام سطوح تنش خشکی، غلظت عنصر، مقدار کل عنصر و مقدار کل عنصر در واحد طول ریشه هر سه عنصر در برگ و ریشه هر سه ژنوتیپ تره میکوریزایی از تره‌های غیرمیکوریزایی بیش‌تر بود. نتایج این پژوهش نشان می‌دهد که در بین ژنوتیپ‌های تره، تره شادگان با داشتن سیستم ریشه‌ای ضعیف‌، رابطه همزیستی قویتری با قارچ‌های میکوریزا داشته است که در نهایت منجر به جذب بالاتر عناصر غذایی در تره‌های میکوریزایی شادگان نسبت به تره‌های دیگر گردید و این تأییدی است بر فرضیه بیلیس حتی در شرایط تنش خشکی.

کلیدواژه‌ها


عنوان مقاله [English]

Influence of Arbuscular Mycorrhizal Fungi and Drought Stress on Some Macro Nutrient Uptake in Three Leek Genotypes with Different Root Morphology

نویسندگان [English]

  • N. Ghasem Jokar 1
  • habib nadian 2
  • B. Khalili Moghaddam 1
  • m. heidari 1
  • M.H. Gharineh 1
1 Ahvaz -Ramin University of Agriculture and Natural Resources
چکیده [English]

Introduction: Drought stress is one of the main problems in agricultural productions in arid and semiarid regions such as Iran. Lack of water influences on most of plant physiological processes such as photosynthes, cellular development and uptake and transmission of nutrients in plants. Some approaches such as selection of resistance cultivars to drought stress, and selection of dripped irrigation have been applied in order to increase the irrigation efficiency. In recent years, biological approaches such as mycorrhizal symbiosis have been used to alleviate the detrimental effects of drought stress. Mycorrhizal symbioses increase the absorption of nutrients, especially phosphorus, and reduce the adverse effects of environmental stresses. It can also improve the host plant growth and yield. The percentage of mycorrhizal dependency of host plants depends on different environmental factors (such as light intensity, temperature, soil conditions), as well as morphological and physiological characteristics of plants. 1n 2010, a greenhouse pot experiment was conducted at University of Agriculture and Natural Resources Ramin. The effect of mycorrhizal inoculation on root morphology of three leek genotypes and uptake of phosphorous, calcium and potassium in shoot and root were studied.
Materials and Methods: The experiment was conducted in a completely randomized design consisting of a 3×3×2 factorial combination. Experimental factors included three levels of soil moisture (40, 60 and 80% of available water in the soil), two mycorrhizal status (with and without fungus Glomus intraradices) and three leek genotypes including: Shadegan (with low root branching, short and thin root length), Esfahan (with abundant root branching and long root length) and Porrum (with low root branching, short and thick root length). The treatments were replicated four times. The soil was autoclaved at 121°C and15 PSI for 15 minutes and gently packed into PVC pots, 200 mm long and 150 mm in diameter. Leek seeds were sterilized with sodium hypochlorite (NaOCl) solution (10%) for 20 min. Two hundred grams of inoculum (spore, hyphae, mycorrhizal clover of root fragments and soil) were placed in deep of plant root. Each pot received 10 cm-3 nutrients solution, free of P weekly. Plants equally watered for one mounth then, drought stresses were applied. Leeks were harvested 12 weeks after planting. Sub-samples of roots were taken for determination of root length were cleared in 10% (w/v) KOH solution and then were stained with trypan blue and root colonization was studied using modified Phillips & Hayman. The colonized root length was determined by binocular and gridline intersect method of Tennant. Phosphorus concentrations were measured by the method of colorimetery with a spectrophotometer. Potassium and calcium concentrations were determined by flame photometer and titration with vercin (Ethylene diamine tetra acetic acid: EDTA), respectively. The statistical analysis was performed using MSTAT-C statistical software and means were compared by Duncan’s multiple range test at the significance level of P

کلیدواژه‌ها [English]

  • Drought stress
  • Mycorrhiza
  • Leek
1- Alizadeh O., and Alizadeh A. 2007. Mycorrhizal effects on nutrient uptake of maize under different soil moisture. Journal of Agricultural Sciences, 3(1): 101-108. (in Persian).
2- Alizadeh-Uskoee P., Aliasgharzadeh N., Shariatmadari H., Asgharzadeh A., and Baghban Siroos SH. 2009. The effect of two species of arbuscular mycorrhizal fungi in reducing the toxicity of cadmium in tomato plants with different levels of phosphorus. Journal of Soil Research (Journal of Soil and Water), 23(2): 217-228. (in Persian).
3- Balys G. 1975. The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In: Endomycorrhiza (Eds Sanders F. E., Moss, B. and Tinker, P. B.). Academic Press London, 373- 389.
4- Bolan N.S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant and Soil, 134:189-207.
5- Fitter A.H. 1989. An ecological flora. Bulletin of British Ecological Society, 20: 199-200.
6- Goicoechea N., Antolin M.C ., and Sanchez-Diaz M. 1997. Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiologia Plantarum, 100: 989-997.
7- Kaya C., Ashraf M., Sonmez O., Aydemir S., Levent-Tuna A., and Cullu M.A. 2009. The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Scientia Horticulturae, 121(1-2): 1-6.
8- Hu Y., and Schmidhalter U. 2005. Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition, 168: 541–549.
9- Li X.L., George E., and Marschner H. (1991). Extension of the phosphorus depletion zone in VA mycorrhizal white clover in a calcareous soil, Plant Soil 136:41-48.
10- Maksimovic I.V., Kastori R.R., Petrovic N.M., Kovacev L.M., and Sklenar P.S. 2003. The effect of water potential on accumulation of some essential elements in sugarbeet leaves (Beta vulgaris ssp. vulgaris). Proceedings for Natural Sciences, Matica Srpska, 104:39-50.
11- Nadian H. 2011. Effect of drought stress and mycorrhizal symbiosis on plant growth and P uptake by two sorghum genotypes different in their root morphology. Journal of Science and Technology of Agriculture and Natural Resources (Water and Soil Sciences), 57: 25-37. (in Persian).
12- Nelson C.E., and Safir G.R. 1982. Increased drought tolerance of mycorrhizal onion plants caused by improved phosphorus nutrition. Planta, 154: 407-413.
13- Nem Pal Singh A., Bhardvaj K., Kumar A., and Singh K. M. 2007. Modern technology of vegetable production. (Translator: Farhad farah vash and Mohammad Mobsher). Islamic Azad University of Tabriz. Tabriz.
14- Philips J.M., and Hayman D.S. 1970. Improved procedures for cleaning roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55:158-161.
15- Ruiz-Lozano J.M., and Azcon R. 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant, 95: 472-478.
16- Ruiz-Lozano J.M., Azcon R., and Gomez M. 1995. Effects of Arbuscular-Mycorrhizal Glomus Species on Drought Tolerance: Physiological and Nutritional Plant Responses. Applied and Environmental Microbiology, 61(2): 456–460.
17- Schûbler A., Schwarzott D., and Walker C. 2001. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research, 105(12): 1413- 1421.
18- Smith S.E. 1982. Inflow of phosphate into mycorrhizal and non-mycorrhizal plants of Trifolium subterraneum at different levels of soil phosphate. New Phytologist, 90: 293-303.
19- Smith S.E., and Read D. 2008. Mycorrhizal Symbiosis. Third Edition. Academic Press. San Diego. California, USA, pp769.
20- Subramanian K.S., Santhanakrishnan P., and Balasubramania P. 2006. Response of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Scientia Horticulturae, 107: 245–253.
21- Tennant D. 1975. A test of a modified line intersect method of estimating root length. Journal of Ecology, 63(3): 995-1001.
22- Tinker P.B., Johns M.D., and Durall D.M. 1992. A functional comparison of Ecto and Endo- Mycorrhizas. CAB Int wellingford UK, 303-310.
23- Wu Q.S. and Xia R.X. 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. Journal of Plant Physiology, 163: 417-425.
CAPTCHA Image