کاربرد سیستم های استنتاج فازی- عصبی تطبیقی و ماشین بردار پشتیبان برای برآورد تبخیر تعرق مرجع ماهانه شمال غرب کشور

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه شهید چمران اهواز

2 دانشگاه ارومیه

چکیده

در مطالعه حاضر به‌منظور پیش بینی تبخیر و تعرق گیاه مرجع با استفاده از دو مدل SVM و ANFIS در مقیاس زمانی ماهانه، 6 ایستگاه سینوپتیک در منطقه شما ل غرب کشور در دوره آماری 38 ساله (2010-1973) انتخاب شد. در ابتدا مقادیر تبخیر و تعرق مرجع ماهانه برای ایستگاه-های منتخب توسط روش فائو- پنمن- مونتیث محاسبه و به عنوان خروجی مدل های SVM و ANFIS در نظر گرفته شد. سپس یک رابطه رگرسیونی بین متغیرهای اقلیمی مختلف موثر در پدیده تبخیر و تعرق به دست آمده و الگوهای مختلف ورودی برای مدل های مورد استفاده مشخص گردید که بر این اساس رطوبت نسبی با داشتن کمترین اثر از ورودی ها حذف گردید. هم چنین در مطالعه حاضر به منظور بررسی اثر حافظه در پیش بینی تبخیر و تعرق از گام های زمانی (تاخیر) یک، دو، سه و چهار ماهانه نیز به عنوان ورودی برای مدل ها استفاده شد. به‌طور کلی برای هر مدل 9 الگوی ورودی ایجاد گردید. نتایج حاصله نشان دهنده دقت بالا و خطای کم هر دو مدل در پیش بینی تبخیر و تعرق مرجع ماهانه بوده ولی کارایی مدل SVM کمی بهتر از مدل ANFIS بود. هم چنین زمانی که از حافظه سری زمانی تبخیر و تعرق برای ورودی مدل ها استفاده گردید، نسبت به حالتی که از متغیرهای اقلیمی به عنوان ورودی استفاده شد، دقت کمتر بود.

کلیدواژه‌ها


عنوان مقاله [English]

Application of ANFIS and SVM Systems in Order to Estimate Monthly Reference Crop Evapotranspiration in the Northwest of Iran

نویسندگان [English]

  • F. Ahmadi 1
  • S. Ayashm 2
  • K. Khalili 2
  • J. Behmanesh 2
1 Shahid Chamran University of Ahvaz
2 Urmia University
چکیده [English]

Introduction Crop evapotranspiration modeling process mainly performs with empirical methods, aerodynamic and energy balance. In these methods, the evapotranspiration is calculated based on the average values of meteorological parameters at different time steps. The linear models didn’t have a good performance in this field due to high variability of evapotranspiration and the researchers have turned to the use of nonlinear and intelligent models. For accurate estimation of this hydrologic variable, it should be spending much time and money to measure many data (19).
Materials and Methods Recently the new hybrid methods have been developed by combining some of methods such as artificial neural networks, fuzzy logic and evolutionary computation, that called Soft Computing and Intelligent Systems. These soft techniques are used in various fields of engineering.
A fuzzy neurosis is a hybrid system that incorporates the decision ability of fuzzy logic with the computational ability of neural network, which provides a high capability for modeling and estimating. Basically, the Fuzzy part is used to classify the input data set and determines the degree of membership (that each number can be laying between 0 and 1) and decisions for the next activity made based on a set of rules and move to the next stage. Adaptive Neuro-Fuzzy Inference Systems (ANFIS) includes some parts of a typical fuzzy expert system which the calculations at each step is performed by the hidden layer neurons and the learning ability of the neural network has been created to increase the system information (9).
SVM is a one of supervised learning methods which used for classification and regression affairs. This method was developed by Vapink (15) based on statistical learning theory. The SVM is a method for binary classification in an arbitrary characteristic space, so it is suitable for prediction problems (12).
The SVM is originally a two-class Classifier that separates the classes by a linear boundary. In this method, the nearest samples to the decision boundary called support vectors. These vectors define the equation of the decision boundary. The classic intelligent simulation algorithms such as artificial neural network usually minimize the absolute error or sum of square errors of the training data, but the SVM models, used the structural error minimization principle (5).
Results Discussion Based on the results of performance evaluations, and RMSE and R criteria, both of the SVM and ANFIS models had a high accuracy in predicting the reference evapotranspiration of North West of Iran. From the results of Tables 6 and 8, it can be concluded that both of the models had similar performance and they can present high accuracy in modeling with different inputs. As the ANFIS model for achieving the maximum accuracy used the maximum, minimum and average temperature, sunshine (M8) and wind speed. But the SVM model in Urmia and Sanandaj stations with M8 pattern and in other stations with M9 pattern achieves the maximum performance. In all of the stations (apart from Sanandaj station) the SVM model had a high accuracy and less error than the ANFIS model but, this difference is not remarkable and the SVM model used more input parameters (than the ANFIS model) for predicting the evapotranspiration.
Conclusion In this research, in order to predict monthly reference evapotranspiration two ANFIS and SVM models employed using collected data at the six synoptic stations in the period of 38 years (1973-2010) located in the north-west of Iran. At first monthly evapotranspiration of a reference crop estimated by FAO-Penman- Monteith method for selected stations as the output of SVM and ANFIS models. Then a regression equation between effective meteorological parameters on evapotranspiration fitted and different input patterns for model determined. Results showed Relative humidity as the less effective parameter deleted from an input of the model. Also in this paper to investigate the effect of memory on predict of evapotranspiration, one, two, three and four months lag used as the input of model. Results showed both models estimated monthly evapotranspiration with the high accuracy but SVM model was better than ANFIS model. Also using the memory of evapotranspiration time series as the input of model instead of meteorological parameters showed less accuracy.

کلیدواژه‌ها [English]

  • Reference evapotranspiration
  • Adaptive Neuro Fuzzy Inference System
  • Support vector machine
Chen S.T., Yu P.S.2007. Real-time probabilistic forecasting of flood stages. Journal of Hydrology, 340: 63-77.
2- Dogan E. 2009. Reference Evapotranspiration Estimation using adaptive neuro-fuzzy inference system, J. Irrig. and Dria. 58: 617-628.
3- Drake J.T. 2000. Communications phase synchronization using the adaptive network fuzzy inference system. Ph.D. Thesis, New Mexico State University, Las Cruces, New Mexico, USA.
4- Eswari S., Raghunath P.N., & Suguna K. 2008. Ductility performance of hybrid fibre reinforced concrete. American Journal of Applied Sciences. 5(9): 1257-1262.
5- Hamel L. 2009. Knowledge Discovery with Support Vector Machines, Hoboken, N.J. John Wiley.
6- Jang J.S. R. 1993. ANFIS: adaptive-network-based fuzzy inference system. Man and Cybernetics, IEEE Transactions on. 23(3): 665-685.
7- Jang J.S.R., Sun C.T., and Mizutani E. 1997. Neuro-fuzzy and Software Computing: a Computational Approach to Learning and Machine Intelligence. Prentice-Hall, New Jersey.
8- Jia Bing C. 2004. Prediction of daily reference evapotranspiration using adaptive neurofuzzy inference system. Trans of the Chinese society of Agricultural Engineering. 20:(4) 13-16.
9- Kisi O. 2007. Adaptive neurofuzzy computing technique for Evapotranspiration Estimation. J. Irrig. and Drain. 133:4. 368-379.
10- Kisi O., and Cimen M. 2010. Evapotranspiration modelling using support vector machines. Hydrological Sciences. 54(5): 918-928.
11- Moradi H., Tamana M., Ansari H., and Naderianfar M. 2011. Evaluating fuzzy inference systems for estimating hourly reference evapotranspiration (Case Study: Fariman). Journal of Water and Soil Conservation, 19(1): 153-168. (in Persian with English abstract)
12- Pai P.F., Hong W.C. 2007. A recurrent support vector regression model in rainfall forecasting. Hydrological Process, 21:819-827.
13- Sattari M.T., Nahrein F., and Azimi V. 2013. M5 Model Trees and Neural Networks Based Prediction of Daily ET0 (Case Study: Bonab Station). Iranian Journal of Irrigation and Drainage. 7(1): 104-113. (in Persian with English abstract)
14- Tabari H., Martinez C., Ezani A., and Hosseinzadeh Talaee P. 2013. Applicability of support vector machines and adaptive neuro- fuzzy inference system for modeling potato crop evapotranspiration. Irri Sci. 31(4): 575-588.
15- Vapnik V.N. 1998. Statistical Learning Theory. Wiley, New York.
16- Varvani H., Moradi M.A., and Varvani J. 2012. Monthly reference crop evapotranspiration estimation by regression tree models in different climates of Iran. Journal of Water Research in Agriculture. 27(4): 523-534. (in Persian with English abstract)
17- Yu P.S, Chen S.T., Chang I.F. 2006. Support vector regression for real-time flood stage forecasting. Hydrology, 328: 704-716.
18- Zare Abyaneh H., Gasemi A., Bayat Varkeshi M., Mohammadi K., and Sabziparvar A. A. 2008. Evaluation of Two Artificial Neural Network Software in Predict of Crop Reference Evapotranspiration. Journal of Water and Soil Science, 19(2): 201-212. (in Persian with English abstract).
19- Zare Abyaneh H., Bayat Varkeshi M., and Marofi S. 2010. Forecasting of garlic (Allium sativum L.) evapotranspiration by using multiple modeling. Journal of Water and Soil Conservation, 18(2): 141-158. (in Persian with English abstract)
CAPTCHA Image