تغییرات مکانی و تخمین زمین آماری برخی ضرایب هیدرولیکی در یک خاک آهکی

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه شیراز

چکیده

اندازه گیری ضرایب هیدرولیکی که در مدل سازی فرایندهای هیدرولوژیکی، طراحی سیستم های آبیاری- زهکشی، انتقال املاح و آلاینده های شیمیایی- زیستی در خاک نقش دارند وقت گیر و پرهزینه است و به دلیل تغییرات مکانی نیاز به تعداد زیادی اندازه گیری می باشد. امروزه تخمین این ویژگی ها با روش های زمین آماری (اندازه گیری های محدود) مورد توجه می باشد. این تحقیق با هدف بررسی تغییرات مکانی و تخمین هدایت-هیدرولیکی اشباع (Ks) و اشباع در شرایط مزرعه، نزدیک اشباع (Kfs)، نمای معادله گاردنر (α)، ضریب جذب آب خاک (S)، پخشیدگی هیدرولیکی (D) و جریان بالقوه ماتریکی (Фm) در یک خاک آهکی انجام شد. اندازه گیری ویژگی های مورد مطالعه در 50 نقطه از خاک آهکی سری دانشکده (در ایستگاه تحقیقاتی دانشکده کشاورزی دانشگاه شیراز واقع در منطقه باجگاه در 15 کیلومتری شمال شیراز) با روش های تک حلقه و قطره چکان انجام شد. پس از بررسی های آماری، همبستگی مکانی با محاسبه و مدلسازی نیم تغییرنما بررسی و روش مناسب تخمین شناسایی و پهنه بندی انجام شد. کلاس تغییر پذیری همه ویژگی ها کم تا متوسط و مدل کروی بهترین مدل برازش داده شده به نیم تغییرنما (به جز Kfs و D) بود. سقف نیم-تغییرنما بین 0003/0 تا 419/0 به ترتیب برای S و Kfs، اثر قطعه ای بین 00015/0 تا 108/0 به ترتیب برای S و Фm و شعاع تاثیر بین 211 تا 4/6 متر به ترتیب برای Ks و D متغیر بود. به ترتیب 5/3 و 50 درصد از تغییرات D و Ks ساختاردار و بقیه تصادفی بود. کلاس وابستگی مکانی ویژگی ها ضعیف تا متوسط بود و در تخمین ها روش وزن دهی نرمال عکس فاصله مناسب تر بود. دقیق ترین و کم دقت ترین تخمین ها به ترتیب مربوط به Ks و Фm بود. پیشنهاد می شود در مواردی که به نقشه ویژگی های هیدرولیکی و یا مقدار آن‌ها در نقاط زیاد نیاز باشد با روش های زمین آماری و اندازه-گیری های محدود، ویژگی ها با دقت قابل قبول برآورد شده تا در وقت و هزینه ها صرفه‌جویی شود.

کلیدواژه‌ها


عنوان مقاله [English]

Spatial Variability and Geostatistical Prediction of Some Soil Hydraulic Coefficients of a Calcareous Soil

نویسندگان [English]

  • Ali Akbar Moosavi
  • Mohammad Omidifard
Shiraz University
چکیده [English]

Introduction: Saturated hydraulic conductivity and the other hydraulic properties of soils are essential vital soil attributes that play role in the modeling of hydrological phenomena, designing irrigation-drainage systems, transportation of salts and chemical and biological pollutants within the soil. Measurement of these hydraulic properties needs some special instruments, expert technician, and are time consuming and expensive and due to their high temporal and spatial variability, a large number of measurements are needed. Nowadays, prediction of these attributes using the readily available soil data using pedotransfer functions or using the limited measurement with applying the geostatistical approaches has been receiving high attention. The study aimed to determine the spatial variability and prediction of saturated (Ks) and near saturated (Kfs) hydraulic conductivity, the power of Gardner equation (α), sorptivity (S), hydraulic diffusivity (D) and matric flux potential (Фm) of a calcareous soil.
Material and Methods: The study was carried out on the soil series of Daneshkadeh located in the Bajgah Agricultural Experimental Station of Agricultural College, Shiraz University, Shiraz, Iran (1852 m above the mean sea level). This soil series with about 745 ha is a deep yellowish brow calcareous soil with textural classes of loam to clay. In the studied soil series 50 sampling locations with the sampling distances of 16, 8 , and 4 m were selected on the relatively regular sampling design. The saturated hydraulic conductivity (Ks), near saturated hydraulic conductivity (Kfs), the power of Gardner equation (α), sorptivity (S), hydraulic diffusivity (D) and matric flux potential (Фm) of the aforementioned sampling locations was determined using the Single Ring and Droplet methods. After, initial statistical processing, including a normality test of data, trend and stationary analysis of data, the semivariograms of each studied hydraulic attributes were calculated in various directions and their surface semivariograms were also prepared to determine the isotropic or anisotropic behavior of each studied soil attributes. Since all of studied soil hydraulic attributes were isotropic variables, therefore, the omnidirectional semivariograms were calculated and different theoretical models were fitted to them. The best fitted semivariogram models were determined using the determination coefficient, R2, and the residual sum of the square, RSS. The parameters of the best fitted models to the experimental semivariograms were also determined. The prediction of study hydraulic attributes was carried out using the parameters of semivariogram models by applying the ordinary Kriging approach. Predictions were also carried out using the Inverse Distance Weighing approach. The results of predictions were compared to each other using the Jackknifing evaluation approach and the suitable prediction method was determined and zoning was performed using the results of introducing prediction method. All of the semivariogram calculations and modeling, prediction of zoning of study hydraulic attributes were performed using the GS+ 5.1 software packages.
Results and Discussion: Results indicated that all of the studied soil hydraulic attributes belonged to the weak to moderated spatial correlation classes and the spherical model was the best fitted model for their semivariograms (except for Kfs and D that their best semivariogram models were exponential). The sill of all semivariograms ranged between 0.0003 to 0.419 for the S and Kfs, respectively. The nugget effects and the Range parameter of all semivariograms were located between 0.00015 to 0.108 for the S and Фm, and 211 to 6.4 m for Ks and D, respectively. Results also indicated that 3.5 and 50% of total variation of D and Ks was spatially structured and the other was random, respectively. The spatial correlation classes of near saturated soil hydraulic conductivity and soil hydraulic diffusivity were week, whereas, the spatial correlation classes of the other studied soil hydraulic attributes were moderate. Results revealed that the Inverse Distance Weighting method was the most suitable approach for the prediction of all studied soil hydraulic attributes in the present study. Comparison of the calculated statistical evaluation measures (i.e. Determination coefficient, R2, Mean residual error, MRE, mean square error, MSE, Normalized mean square error, NRMSE and geometric mean error ratio, GMER) and the final determined order of precision showed that the most and the least accurate predictions were obtained for Ks and Фm, respectively.
Conclusion: It is suggested in the cases that we need to map the hydraulic attributes or need their quantities in a large number; geostatistical prediction be performed using the limited measurements to reduce the needed time and costs.

کلیدواژه‌ها [English]

  • Hydraulic diffusivity
  • Near saturated hydraulic conductivity
  • Saturated Hydraulic Conductivity
  • Sorptivity
1-Alemi M.H., Shahriari M.R., and Nielson D.R. 1998. Kriging and co-kriging of soil water properties. Soil Technology, 1:117-132.
2-Bellocchi‚ G.‚ Fila G., and Donatelli M. 2002. An indicator of solar radiation model performance based on a fuzzy expert system. Agronomy Journal, 94: 1222-1233.
3-Cambardella C.A., Moorman T.B., Parkin T.B., Karlen D.L., Turco R.F., and A.E. Konopka. 1994. Field scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58:1501-1511.
4-Chaplot V., Darboux F., Bourennane H., Leguedois S., Silvera N., and Phachomphon K. 2006. Accuracy of interpolation techniques for the derivation of digital elevation models in relation to landform types and data density. Geomorphology, 77:126-141.
5-Delbari M., Khayat Kholghi M., and Mahdian M.H. 2005. Evaluation of geostatistical methods in prediction of soil hydraulic conductivity of Shibab and Poshtab region of Sistan plain. Iranian Journal of Agricultural Science, 35 (1): 1-12. (in Persian with English abstract)
6-Ersahin S. 2003. Comparing ordinary kriging and cokriging to estimate infiltration rate. Soil Science Society of America Journal, 67:1848-1855.
7-Fathi M., Hajabbasi M.A., and Khademi, H. 2000. Spatial distribution of some physical soil attributes of southern Esfahan in field scale. The 6th Soil Science Congress, Ferdowsi University, pp. 605- 607. (in Persian)
8-Ghorbani Dashtaki S., Homaee M., and Mahdian M.H. 2009. Site dependence performance of infiltration models. Water Resources Management, 23:2777-2790.
9-Ghorbani Dashtaki, Sh., Homaee M., and Mahdian, M. H. 2011. Influence of land use on spatial variability of infiltration parameters. Iranian Journal of Irrigation and Drainage, 4(2): 206- 221. (in Persian with English abstract)
10-Goovaerts P. 1999. Geostatistics in soil science: state-of-the-art and perspectives. Geoderma, 89:1-45.
11-Hu W., Shao M.A., Wang Q. J., Fan J., and Reichardt K. 2008. Spatial variability of soil hydraulic properties on a steep slope in the Loess Plateau of China. Science of Agriculture (Piracicaba, Braz.), 65:268–276.
12-Kravchenko A. 2003. Influence of spatial structure on accuracy of interpolation methods. Soil Science Society of America Journal, 67(5):1564-1571.
13-Luo W., Taylor M., and Parker S. 2008. A comparison of spatial interpolation methods to estimate continuous wind speed surfaces using irregularly distributed data from England and Wales. International Journal of Climatology, 8(7):947-959.
14-Mallants D., Mohanty B.P., Vervoort A., and Feyen J. 1997. Spatial analysis of saturated hydraulic conductivity in a soil with macropores. Soil Technology, 10:115-131.
15-Mohanty B.P., Ankeny M.D., Horton R., and Kanwar R.S. 1994. Spatial variability of hydraulic conductivity measured by disc infiltrometer. Water Resources Research, 30:2489–2498.
16-Moosavi, A.A., and Sepaskhah A.R. 2012. Spatial variability of physicochemical properties and hydraulic characteristics of a gravelly calcareous soil. Archives of Agronomy and Soil Science, 58:631-658.
17-Moradi M., Ghonchehpour D., Majidi A., and Mahmoudi Nejad V. 2012. Geostatistic approaches for investigating of soil hydraulic conductivity in Shahrekord Plain, Iran. American Journal of Mathematics and Statistics, 2:164-168.
18-Motaghian H.R., Karimi A., and Mohammadi J. 2007. Analysis of spatial variability of specific physical and hydraulic properties of soil on a catchment scale. Journal of Water and Soil (Agricultural Sciences and Technologies), 22(2): 442- 436 (In Persian with English abstract).
19-Reynolds W.D., and Elrick D.E. 1990. Ponded infiltration from a single ring: I. Analysis of steady flow. Soil Science Society of America Journal, 54:1233–1241.
20-Rogers J.S., Selim H.M., Carter C.E., and Fouss J.L. 1991. Variability of auger hole hydraulic conductivity values for a commerce silt loam. Transaction of ASAE. 34(3):876-881.
21-Shani U., Hanks R.J., Bresler E., and Oliveria C.A.S. 1986. Field methods of estimating hydraulic conductivity and matric potentic – water content relations. Soil Science Society of America Journal, 51:298-302.
22-Sobieraj J.A., Elsenbeer H., and Cameron G. 2004. Scale dependency in spatial patterns of saturated hydraulic conductivity. Catena, 55:49-77.
23-Vahedi S., Zare Abyaneh H., Taheri M., and Bahmani O. Studing spatial variability of some chemical and hydraulic soil properties of Ghazel Ozan river marginal lands using geostatistical methods. 2013. Iranian Journal of Water Research, 12: 141-150 (in Persian with English abstract).
24-Wu C., Wu J., Luo Y., Zhang H., and Teng Y. 2008. Statistical and geoestatistical characterization of heavy metal concentrations in a contaminated area taking into account soil map units. Geoderma, 144:171-179.
25-Zeleke T.B. and Si B.C. 2005. Scaling relationships between saturated hydraulic conductivity and soil physical properties. Soil Science Society of America Journal, 69:1691-1702.
CAPTCHA Image