پایش وضعیت‌های رطوبتی و روند آن‌ها بر مبنای شاخص بارش- تبخیر و تعرق استاندارد شده (SPEI) در نواحی مختلف آب و هوایی ایران

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه بوعلی سینا، همدان

2 دانشگاه فردوسی مشهد

3 دانشگاه کارولینای جنوبی

چکیده

خشکسالی یک ویژگی طبیعی تکرار شونده از تغییرات اقلیمی می‌باشد که اساسا در ارتباط با کمبود بارش تعریف می‌گردد. امروزه همگان پذیرفته‌اند که خشکسالی یک پدیده‌ی چند متغیره می‌باشد و نوسانات هر یک از متغیرهای جوی و اقلیمی می‌توانند سبب افزایش یا کاهش شدت این پدیده گردد. شاخص نسبتاً جدید بارش- تبخیر و تعرق استاندارد شده (SPEI) از داده‌های بارش و تبخیر و تعرق در قالب یک مدل بیلان آبی بر پایه‌ی مفاهیم شاخص بارش استاندارد شده (SPI) استفاده می‌کند و قادر به در نظر گرفتن اثرات ناشی از گرمایش جهانی می‌باشد. در این تحقیق با بررسی ارتباط بین شاخص SPEI با شاخص‌های SPI و شناسائی خشکسالی (RDI)، از شاخص SPEI برای پایش خشکسالی 11 ایستگاه واقع در 6 منطقه‌ی مختلف آب و هوائی ایران در مقیاس‌های سالانه، کوتاه‌مدت (1، 3 و 6 ماهه) و بلندمدت (9، 12، 18و 24 ماهه) استفاده شده است. هم‌چنین به منظور بررسی روند وضعیت‌های رطوبتی طی 51 سال اخیر (2010- 1960) در کشور از روش گرافیکی LOWESS و آزمون ناپارامتری من– کندال به ترتیب در مقیاس سالانه و ماهانه استفاده شده است. مطابق نتایج بدست آمده بیشترین همبستگی شاخص ‌SPEI با شاخص های SPI و RDI مربوط به ایستگاه‌های واقع در نواحی مرطوب ساحلی می‌باشد و با کم‌شدن مقدار رطوبت، همبستگی آن‌ها با یکدیگر کاهش می‌یابد. مقایسه‌ی نتایج شاخص‌های SPI و SPEI نشان داد که شاخص SPI ضمن داشتن نتایج مناسب در مناطق مرطوب، در مناطق خشک دقت کمتری دارد. هم‌چنین بر اساس نتایج شاخص SPEI در مقیاس‌های بلندمدت، سه دوره‌ی مشخص رطوبتی در طول 51 سال گذشته قابل تشخیص می‌باشد که شروع وقایع خشکسالی دوره‌ی سوم از سال 1997 می‌باشد. نتایج بررسی روند سالانه وضعیت‌های رطوبتی نیز نشان دهنده‌ی تغییرات افزایشی وقوع خشکسالی‌ها در سال‌های منتهی به سال 2010 می‌باشد. از طرفی بررسی روند وضعیت‌های رطوبتی بر اساس شاخص SPEI یک ماهه نشان می‌دهد که روند مشاهد شده برای بیشتر ماه‌های سال (اکتبر تا دسامبر و ژانویه تا ژوئن) در ایستگاه‌های مورد بررسی به جز تهران و شیراز بیشتر از نوع کاهشی می‌باشد که نشانگر افزایش کمبودهای رطوبتی طی سال زراعی می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Assessment of Humidity Conditions and Trends Based on Standardized Precipitation Evapotranspiration Index (SEPI) Over Different Climatic Regions of Iran

نویسندگان [English]

  • Mohammad Ghabaei S 1
  • Hamid Zare Abyaneh 1
  • Abolfazl Mosaedi 2
  • S. Zahra Samadi 3
1 Bu-Ali Sina University
2 Ferdowsi University of Mashhad
3 University of South Carolina
چکیده [English]

Introduction: Drought is a recurrent feature of climate that caused by deficiency of precipitation over time. Due to the rise in water demand and alarming climate change, recent year’s observer much focus on drought and drought conditions. A multiple types of deficits and relevant temporal scales can be achieved through the construction of a joint indicator that draws on information from multiple sources and will therefore enable better assessment of drought characteristics including return period, persistent and severity. The Standardized Precipitation Evapotranspiration Index (SPEI) combines information from precipitation and temperature in the form of water surplus or deficit according to Standardized Precipitation Index (SPI). Rainfall over some regions of Iran during some resent year was below average while mean and maximum temperatures were very high during this period, as was evaporation. This would suggest that drought conditions were worse than in previous recent periods with similarly low rainfall. The main objective of this study is to assess the influences of humidity on the SPEI index and investigate its relation with SPI and Reconnaissance Drought Index (RDI) over six different climatic regions in Iran.
Materials and Methods: Iran has different climatic conditions which vary from desert in central part to costal wet near the Caspian Sea. In this study the selection of stations was done based on Alijani et al (2008) climatic classification. We chose 11 synoptic stations from six different climatic classes including costal wet (Rasht and Babolsar), semi mountains (Mashhad and Tabriz), mountains (Shiraz and Khoram Abad), semi-arid (Tehran and Semnan), arid (Kerman and Yazd) and costal desert (Bandar Abas). The Meteorological datasets for the aforementioned stations were obtained from the Iran Meteorological Organization (IRIMO) for the period 1960-2010. The compiled data included average monthly values of precipitation, minimum and maximum air temperature, mean relative humidity, sunshine hours) and wind speed at 2 m height. A probability-based overall water deficit assessment was achieved from multiple drought-related indices (i.e. SPEI, SPI and RDI). The humidity conditions were monitored for given stations based on each index during annual, short term (1, 3 and 6 months) and long term (9 , 12, 18 and 24 months) periods. This research further examine the Locally Weighted Scatter plot Smoothing (LOWESS) graphical method and nonparametric Man- Kendal test to evaluate the trends associated with humidity deficiency in annual and monthly time scales during 51 years period (i.e. 1960-2010).
Results and Discussion: Our results revealed that the maximum correlation between SPEI index with indices of SPI and RDI was achieved in the coastal wet region and with a declining trend in relative humidity condition in the rest of the regions, this correlation is down over both short- and long-term periods. A comparison between SPI and SPEI also performed that the SPI index was able to reflect prolonged drought over the costal wet region where it showed significant inconstancy in desert and semi desert regions. SPEI result suggested substantial deficiencies in relative humidity at the beginning of 1997 during long term period which indicated an increasing trend of drought statues during last decades. Overall, according to the results of SPEI index in 1month periods monthly drought assessment showed a declining trend in drought magnitude during autumn, winter and spring season months (October to June) at investigated stations excepts Tehran and Shiraz stations and with a potential deficiency in relative humidity conditions. Unlikely, annual trend showed increasing trends in drought frequency and persistent over last decade.
Conclusion: Our results can be summarized as below:
Focusing on various types of deficits, the result of humidity based deficiencies indicated that for semi-mountains, mountains, semi-arid, arid and costal desert regions the period of 1997 to 2010 has a large total moisture shortage over all climatic regions. Most of the climate stations showed moisture deficits (decline trends) during October to June (9-month) at many stations expect Tehran and Shiraz stations which revealed a significant increasing over 51 years. We recommend using SPEI index for arid and semi-arid regions because it includes temperature variability in drought model so it reflects drought conditions better than other indices. Furthermore, three drought indices (i.e. SPEI, SPI and RDI) have similar sensitivity to water deficits over wet climatic regions; therefore, each of those indices can be used.

کلیدواژه‌ها [English]

  • drought
  • LOWESS Graphical Technique
  • Man-Kendal Test
  • Water Surplus or Deficit
1- Allen R.G., Pereira L.S., Raes D., and Smith M. 1998. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, 300(9), D05109.
2- Alijani B., Ghohroudi M. and Arabi N. 2008. Developing a climate model for Iran using GIS. Theoretical Applied Climatology, 92 (1-2): 103–112.
3- Asadi Zarch M.A., Malekinezhad H., Mobin M.H., Dastorani M.T., and Kousari M.R. 2011. Drought monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Recourse Management, 25 (13): 3485-3504.
4- Blekinsop B., and Fowler H.J. 2007. Changes in drought frequency, severity and duration for the British Isles projected by the PRUDENCE regional climate models. Journal of Hydrology, 342: 50–71.
5- Dinpashoh Y. 2003. Analysis meteorological drought using pattern analyzing. Ph.D. thesis, University of Tabriz. 192 pp (in Persian).
6- Heim R.R. 2002. A review of twentieth- century drought indices used in the United States. Bulletin American Meteorological Society, 83 (8): 1149–1165.
7- Helsel D.R., and Hirsch R.M. 1992. Statistical methods in water resources (Vol. 49). Elsevier,
8- Jamshidi H., Khalili D., Rezaeian Zadeh M., and Hosseinipour E.Z. 2011. Assesment and comparison of SPI and RDI metrological drought indices in selected synoptic stations of Iran. In World Environmental and Water Resources Congress (pp. 1161–1173).
9- Khalili D., Farnoud T., Jamshidi H., Kamgar-Haghighi A.A., and Zand-Parsa SH. 2011. Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Recourse Management, 25 (6): 1737–1757.
10- Liang L., Li L. and Liu Q. 2010. Temporal variation of reference evapotranspiration during 1961–2005 in the Taoer River basin of Northeast China. Agricultural and Forest Meteorology, 150(2): 298–306.
11- Lloyd-Hughes B., and Saunders M.A. 2002. A drought climatology for Europe. International Journal Climatology, 22 (13): 1571–1592.
12- Lorenzo-Lacruz J., Vicente-Serrano S.M., Lopez-Moreno J.I., Begueria S., Garcia-Ruiz J.M., and Cuadrat J.M. 2010. The impact of droughts and water management on various hydrological systems in the headwaters of the Tagus River (central Spain). Journal of Hydrology, 386 (1): 13–26.
13- McKee T.B., Doesken N.J., and Kleist J. 1993. The relationship of drought frequency and duration to time scales. Preprints, Eighth Conf. on Applied Climatology, Anaheim, CA, American Meteorological Society, 179–184.
14- Mishra A.K. and Singh V.P. 2010. A review of drought concepts. Journal of Hydrology, 391(1): 202–216.
15- Morid S., Smakhtin V., and Moghaddasi M. 2006. Comparison of seven meteorological indices for drought monitoring in Iran. International Journal Climatology, 26: 971–985.
16- Nicholls N. 2004. The changing nature of Australian droughts. Climatic Change, 63: 323–336.
17- Partal T. and Kahya E. 2006. Trend analysis in Turkish precipitation data. Hydrological Process, 20(9): 2011–2026.
18- Pereira A.R., and Pruitt W.O. 2004. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration. Agricultural Water Management, 66 (3): 251–257.
19- Potop, V., Boroneanţ, C., Možný, M., Štěpanek, P., and Skalak, P. 2014. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and applied climatology, 115(3–4): 563–581.
20- Trenberth K.E. 2011. Changes in precipitation with climate change. Climate Research, 47 (1): 123–138
21- Tsakiris G., Nalbantis I, Pangalou D, Tigkas D. and Vangelis, H. 2008. Drought meteorological monitoring network design for the reconnaissance drought index (RDI). In Proceedings of the 1st International Conference “Drought management: scientific and technological innovations”. Zaragoza, Spain: option Mediterraneennes, series A (No. 80, pp. 12-14).
22- Tsakiris G., Pangalou D., and Vangelis H. 2007. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Recourse Management, 21 (5): 821–833.
23- Vangelis H, Tigkas D., and Tsakiris G . 2013. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. Journal of Arid Environment, 88: 130–140.
24- Vicente-Serrano S.M., Begueria S., and Lopez-Moreno J.I. 2010. A Multi-scalar drought index sensitive to global warming: The Standardized Precipitation Evapotranspiration Index– SPEI. Journal Climate, 23(7): 1696–1718.
25- Zhang X., Vincent L.A., Hogg W.D., and Niitsoo A. 2000. Temperature and precipitation trends in Canada during the 20th century. Atmosphere Ocean, 38(3): 395–429.
CAPTCHA Image