##plugins.themes.bootstrap3.article.main##

زینب بیگدلی احمد گلچین سعید شفیعی

چکیده

تندی تجزیه¬ کربن و نیتروژن آلی مانده های گیاهی توسط عواملی پرشماری از جمله ویژگی¬های فیزیکی، شیمیایی و بیولوژیکی خاک مهار می-شود. فلزهای سنگین با آلوده ساختن خاک و تغییر ویژگی¬های شیمیایی و بیولوژیکی آن دینامیک کربن و نیتروژن آلی را تحت پیامد قرار می¬دهند. با توجه به اینکه میزان زهری بودن فلزهای سنگین گوناگون متفاوت بوده و تندی تجزیه مانده¬های گیاهی تحت پیامد غلظت فراهم فلزهای سنگین قرار می¬گیرد، هدف این پژوهش بررسی پیامد غلظت¬های گوناگون کادمیوم خاک بر کانی شدن کربن و نیتروژن آلی بود. برای بررسی پیامد آلودگی خاک به کادمیوم بر کانی شدن کربن و نیتروژن آلی مانده های گیاه گندم، یک آزمایش به¬روش کیف¬کلش و به¬گونه گلدانی و با آرایش فاکتوریل در قالب طرح کاملأ تصادفی با سه تکرار انجام شد. فاکتورهای بررسی شده شامل سطوح آلودگی خاک به کادمیوم (صفر، 10، 20، 40 و 80 میلی¬گرم کادمیوم در کیلو¬گرم خاک) و زمان (1، 2، 3 و 4 ماه) خوابانیدن مانده ها بودند. نتایج تجزیه¬ی واریانس داده¬ها نشان داد که سطوح کادمیوم خاک و زمان خوابانیدن پیامد معنی¬داری بر میزان هدررفت و ثابت تندی تجزیه¬ی کربن و نیتروژن آلی داشتند. نتایج آزمون میانگین¬ها نشان داد که با افزایش غلظت کادمیوم خاک به بیش از 10 میلی¬گرم در کیلو¬گرم میزان هدررفت کربن و نیتروژن آلی از مانده¬های گندم به¬طور معنی¬دار کاهش یافت و کمترین درصد هدررفت کربن و نیتروژن آلی مربوط به سطح 80 میلی¬گرم کادمیوم در کیلو¬گرم خاک بود. میزان هدررفت کربن آلی از مانده¬های گندم در یک ماه بعد از خوابانیدن 78/30 درصد و در سه ماهه بعدی خوابانیدن 74/9 درصد و در مجموع 52/40 درصد برای یک دوره چهار ماهه بود. میزان هدررفت نیتروژن آلی از مانده¬های گندم نیز در یک¬ماه بعد از خوابانیدن 69/23 درصد ودر سه ماهه بعدی خوابانیدن 56/8 درصد و در مجموع 25/32 درصد برای یک دوره چهار ماهه بود. آلودگی خاک به کادمیوم مایه کندشدن چرخه کربن و نیتروژن شده و به نگه¬داشت بیشتر این عناصر در خاک کمک می کند.

جزئیات مقاله

مراجع
1. Alloway B. J. 1995. Heavy metals in moils. Blackie Academic and Professional. New York.
2. Andersson A.1992. Trace elements in agricultural soils, fluxes and balances. Swedish Environmental Protection Ageney. Report 4077.
3. Baath E. 1989. Effects of heavy metals in soil on microbial processes and populations (a review). Water, Air and Soil Pollution, 47:335-379.
4. Berg B. and Matzner, E., 1997. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environmental Reviews, 5(1), pp.1-25.
5. Bremner J. M. and Mulvaney, C. S. 1982. Nitrogen total. pp. 595- 624. In: A. L. Page., R. H.Miller. And D. R. Keeney (eds.). Methods of soil analysis. Part 2. Chemical analysis. American Society of Agronomy Inc. and Soil Science Society of American Inc. Madison, W I.
6. Bremner J. M. 1996. Nitrogen – Total. pp. 1085-1122. In Sparks D. L, et al (Eds.), Methods of Soil Analysis. SSSA, Inc. ASA, Inc. Madison, WI.
7. Cotrufo M. F., Virzo dc Santo, A., Alfani, A., Bartoli, G. and De Cristofaro, A. 1995. Effects of urban heavy metal pollution on organic matter decomposition in Quercus ilex L. woods. Environmental Pollution. 89(1): 81–87.
8. Chen Y.P, Liu Q. , Liu Y. J. , Jia F. A. , He X. H. 2014. Responses of soil microbial activity to cadmium pollution and elevated CO2. Scientific Reports. doi:10.1038/srep04287.
9. Chaney W.R., Kelley J.M. and Strickland R.C. 1978. Influence of cadmium and zinc on carbon dioxide evolution from litter and soil from a black oak forest. Journal of Environmental Quality. 7: 115–119.
10. Cornwell W.K., Cornelissen, J.H.C., Amatangelo, K., Dorrepaal, E., Eviner, V.T ., Godoy, O., Hobbie, S.E., Hoorens, B., Kurokawa, H., Perez-Harguindeguy, N., Quested, H.M., Santiago, L.S.,Wardle, D.A.,Wright, I.J., Aerts, R., Allison, S.D., van Bodegom, P., Brovkin, V., Chatain, A., Callaghan, T.V., Díaz, S., Garnier, E., Gurvich, D.E., Kazakou, E., Klein, J.A., Read, J., Reich, P.B., Soudzilovskaia, N.A., Vaieretti, M.V., Westoby, M., 2008. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065e1071.
11. Dai J., Becquer, T., Rouiller, J. H., Reversat, G., Bernhard-Reversat, F.and Lavelle, P. 2004. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn, Pb, Cu, and Cd contaminated soils. Applied Soil Ecology. 25(2): 99-109.
12. Day R. 1965. Particle fractionation and particle size analysis. pp. 545-566, In: Black, C. A. et al (Eds), Methods of soil analysis. Part 1. Ser. No. 9. ASA. Madison, WI.
13. Duong T.T.T., 2009. Dynamics of plant residue decomposition and nutrient release (Doctoral dissertation, The University of Adelaide, Australia).
14. Ernest W. H. O. 1996. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry. 11: 163-167.
15. Freitas A. C., Rodrigues, D., Rocha-Santos, T. A., Gonçalves, F., Duarte, A. C. and Pereira, R. 2014. The impact of uranium mine contamination of soils on plant litter decomposition. Archives of Environmental Contamination and Toxicology. 67(4):601-616.
16. Gallardo A. and Merino,J. 1993. Leaf decomposition in two Mediterranean ecosystems of southwest Spain: influenceof substrate quality. Ecology. 74:152–161.
17. Gee GW. and Bauder, JW. 1986. Physical and Mineralogical Methods. pp. 383-409. In: Clute A (ed). Methods of Soil Analysis, part 1. ASA and SSSA, Medison Wisconsin.
18. Gregorich E. G., Beare, M. H., Stoklas, U. and St-Georges, P. 2003. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma. 113(3): 237-252.
19. Goering H. K. and P. J. Van Soests. 1970. Forage fiber analysis (A pparatus, reagents, procedures and Some applications). USDA Hand book NO. 397. US. Government printing office. Washington, Dc.
20. Hassan Dar G.H. and Mishra, M. M. 1994. Influence of cadmium on carbon and nitrogen in sewage sludge amended soils. Environmental Pollution. 84: 285-290.
21. Hassen A., Jedidi, N., Cherif, M., M'Hiri, A., Boudabous, A. and Van Cleemput, O. 1998. Mineralization of nitrogen in a clayey loamy soil amended with organic wastes enriched with Zn, Cu and Cd. Bioresource Technology. 64(1): 39-45.
22. Hendricks C.W., 1996. The Effect of toxic chemicals on nutrient cycling processes in soils. pp. 235-270. In: Tarredellas, J., Bitton, G.and Rossel, D. (eds.), Soil Ecotoxicology. Lewis, New York.
23. Jalil A., Selles, F. and Clark, J. M. 1994. Effect of Cd on growth and uptake of Cd and other elements by durum wheat. Journal of Plant Nutrition. 17:1839-1858.
24. Kandeler E, Tscherko D, Bruce KD, Stemmer M, Hobbs PJ, Bardgett RD and Amelung W, 2000. Structure and function of the soil microbial communities in microhabitats of a heavy metalpolluted soil. Biol Fertil Soil. 32: 390-400.
25. Karaca A., Naseby D.C. and Lynch J.M. 2002. Effect of cadmium contamination with sewage sludge and phosphate fertilizer amendments on soil enzyme activities, microbial structure and available cadmium, Biology and Fertility of Soils, 35:428–434.
26. Kumar K. and Goh, K.M., 2000. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Advances in Agronomy. 68, pp.197-319.
27. Larson W. E. and Pierce, F. J. 1991. Conservation and enhancement of soil quality. pp. 175-203. In: Evaluation for Sustainable Land Management in the Developing World. IBSRAM Proc., 12th, Bangkok, Thailand.
28. Lindsay W. L. and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J. 42: 421-428.
29. Liao M. and Xiao, M. 2007 Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area. Ecotoxicology and Environmental Safety. 66(2):217-223.
30. Marschner B. and Kalbitz, K. 2003. Control of bioavailabilityandbiodegradation of dissolved organic matter in soils. Geoderma. 113 (3-4): 211–235.
31. McGrath S. P., Zhao, F. J. and Lombi, E. 2001. Plant and rhizosphere processes involved in phytoremediation of metalcontaminated soils. Plant and Soil. 232: 207–214.
32. Murungu F. S., Chiduza, C., Muchaonyerwa. P. and Mnkeni, P. N. S. 2011. Decomposition, nitrogen and phosphorus mineralization from winter-grown cover crop residues and suitability for a smallholder farming system in South Africa. NutrCyclAgroecosyst. 89:115–123.
33. Montserra D., B. Earland. and F. Asa. 1994. Multiple heavy metal tolerance of soil bacterial communities and its measurment by a thymidine incorporation Technique. Appli & Envir Microbiol. 60: 2238-2247.
34. Nelson D. W. and Sommer, L. E. 1982. Total carbon, organic carbon, and organic matter. pp. 595- 624. In: Page, A. L. (eds.). Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. American Society of Agronomy. Madison, W I.
35. Olson J. S. 1963. Energy storage and balance of producers and decomposition in ecological systems. Ecology. 44: 322- 331.
36. Page A. L., R. H. Miller. and D. R. Keeney. 1982. Chemical microbiological properties. pp. 1-1143. In: Page A. L et al (Eds.), Methods of soil analysis. Part 2. American Society of Agronomy. Inc. Soil Science of America. Inc. Madison, Wisconsin, USA.
37. Rottmann N., Dyckmans, J. and Joergensen, R.G., 2010. Microbial use and decomposition of maize leaf straw incubated in packed soil columns at different depths. European Journal of Soil Biology. 46(1), pp.27-33.
38. Van Nevel L., Mertens, J., Demey, A., De Schrijver, A., De Neve, S., Tack, F. M. and Verheyen, K. 2014. Metal and nutrient dynamics in decomposing tree litter on a metal contaminated site. Environmental Pollution. 189: 54-62.
39. Vaieretti M. V., Harguindeguy, N. P., Gurvich, D. E., Cingolani, A. M., and Cabido, M. (2005). Decomposition dynamics and physico-chemical leaf quality of abundant species in a montane woodland in central Argentina. Plant and soil. 278(1-2), 223-234.
40. Vásquez-Murrieta M. S., I. Migueles-Garduño, O. Franco-Hernández, B. Govaerts. and L. Dendooven. 2006. C and N mineralization and microbial biomass in heavy-metal contaminated soil. European journal of soil biology. 42(2): 89-98.
41. Wickings K., Grandy, A.S., Reed, S.C., Cleveland, C.C., 2012. The origin of litter chemical complexity during decomposition. Ecol. Lett. 15,1180-1188.
ارجاع به مقاله
بیگدلیز., گلچینا., & شفیعیس. (2016). کانی شدن کربن و نیتروژن آلی مانده های گندم در خاک های آلوده به کادمیوم. آب و خاک, 31(2), 581-596. https://doi.org/10.22067/jsw.v31i2.54853
نوع مقاله
علمی - پژوهشی