اثر تلقیح سودوموناس‌های آزادکننده پتاسیم بر رشد و جذب پتاسیم گوجه‌فرنگی در دو خاک با مقادیر مختلف پتاسیم در دسترس

نوع مقاله : مقالات پژوهشی

نویسندگان

تبریز

چکیده

پتاسیم یکی از عناصر غذایی اصلی ضروری برای گیاهان است که نقش حیاتی در فرایند‌های گیاه دارد. این عنصر غالب‌ترین کاتیون جذبی به وسیله گیاهان می‌باشد و در رشد و توسعه و متابولیسم گیاه نقش اساسی دارد. پتاسیم در خاک به اشکال قابل استفاده، غیرتبادلی و در ساختار کانی‌ها وجود دارد. پتاسیمی که در ساختار کانی‌ها حضور دارد بیش از 90 تا 95 درصد پتاسیم خاک را به خود اختصاص می‌دهد. این شکل پتاسیم (پتاسیم موجود در کانیها) برای گیاهان به این سادگی قابل استفاده نمی‌باشد، بلکه گیاهان قادرند پتاسیم را تنها از فاز محلول خاک جذب و مورد استفاده قرار دهند. برخی از ریزجانداران خاک قادرند با سازوکارهایی، پتاسیم تثبیت شده و غیرتبادلی خاک را به فرم قابل استفاده تبدیل کنند و فراهمی پتاسیم را برای گیاه افزایش دهند. استفاده از باکتریهای محرک رشد به ویژه باکتریهای آزادکننده پتاسیم به عنوان کود زیستی یک شیوه امیدبخش در بهبود تغذیه پتاسیمی گیاهان و تولید آنها بوده و شیوه همسو با کشاورزی پایدار می‌باشد. بر این اساس آزمایش بر روی جداسازی و شناسایی این قبیل از باکتریها و بررسی کارایی آنها در تحقیقات اخیر مورد توجه قرار گرفته است. در این پژوهش توانایی پنج جدایه میکروبی Pseudomonas spp. از باکتری‌های آزادکننده پتاسیم شاملS6-6 ، S10-3، S14-3، S19-1 و S21-1 بر بهبود رشد و افزایش جذب پتاسیم توسط گیاه گوجه‌فرنگی در دو خاک با پتاسیم قابل استفاده کمتر از mg/kg 200 و خاک با پتاسیم قابل استفاده بیشتر از mg/kg 400 در حضور ریزجانداران بومی خاک بررسی شد. در این تحقیق دو خاک مختلف با میزان پتاسیم قابل استفاده کمتر از 200 میلی‌گرم بر کیلوگرم (خاک خلعت‌پوشان) و بیش از 400 میلی‌گرم بر کیلوگرم (خاک کندوان) مورد استفاده قرار گرفت. همه جدایه‌های باکتریایی مورد استفاده در این پژوهش (S6-6، S10-3، S14-3، S19-1 و S21-1) متعلق به جنس سودوموناس بودند و توانایی آنها به عنوان باکتریهای آزادکننده پتاسیم مورد ارزیابی قرار گرفت. جهت استفاده باکتریها به عنوان زادمایه باکتریایی، ابتدا کشت تازه‌ای از آنها در محیط نوترینت براث تهیه شد و برای تلقیح کشت گیاه مورد استفاده قرار گرفت. برای تلقیح هر گلدان از 10 میلی‌لیتر زادمایه باکتریایی استفاده شد. آزمایش در قالب طرح کاملاً تصادفی در دو خاک با مشخصات فوق با حضور 5 جدایه باکتری و یک تیمار شاهد (بدون تلقیح میکروبی) با در نظر گرفتن سه تکرار به انجام رسید. بذرهای گوجه‌فرنگی با زادمایه باکتریایی آغشته شد و کشت در خاک غیراستریل در حضور ریزجانداران بومی خاک انجام پذیرفت. آزمایش تا ابتدای فاز زایشی پیش رفت و پارامترهای رشدی و تغذیه‌ای گیاه (نظیر شاخص کلروفیل، وزن تر و خشک بخش هوایی و ریشه، مقادیر عناصر فسفر و پتاسیم) اندازه‌گیری شد. آنالیز داده‌ها با نرم‌افزار SPSS صورت پذیرفت و مقایسات میانگین به روش دانکن انجام شد. نتایج در خاک با پتاسیم قابل استفاده کمتر از mg/kg 200 نشان داد که شاخص کلروفیل، وزن خشک اندام هوایی و ریشه،جذب پتاسیم و فسفر در اندام هوایی و ریشه متأثر از جدایه‌های باکتریایی بوده است. مقایسه میانگین نشان داد جدایه S21-1 بیشترین شاخص کلروفیل، وزن خشک اندام هوایی، جذب پتاسیم و فسفر اندام هوایی را داشت که به ترتیب باعث افزایش 7/23، 12، 20/22 و 41 درصد نسبت به شاهد شد. جدایه S14-3 بیشترین وزن خشک ریشه، جذب پتاسیم و فسفر ریشه را داشت و به ترتیب باعث افزایش 6/36، 88/24 و 7/32 درصد نسبت به شاهد شد. اثرات باکتری بر ویژگی‌های اندازه‌گیری شده در خاک با پتاسیم قابل استفاده بیشتر از mg/kg 400 معنی‌دار نشد. اما مقایسه میانگین نشان داد بیشترین مقدار شاخص کلروفیل متعلق به جدایه S21-1 بود که نسبت به شاهد 11/14 درصد افزایش نشان داد و دو جدایه S14-3 و S21-1 بیشترین جذب پتاسیم و فسفر اندام هوایی را داشتند که به طور متوسط نسبت به شاهد 7 درصد افزایش نشان دادند، هر چند این اختلافات معنی‌دار نبود. در این آزمایشات، جدایه‌های S21-1 و S14-3 نسبت به سایر جدایه‌ها برتر شناخته شدند. این آزمایش مشخص ساخت که اثربخشی باکتریهای آزادکننده پتاسیم متاثر از پتاسیم قابل استفاده خاک می‌باشد و هر چه میزان پتاسیم قابل استفاده در خاک کمتر باشد می‎‌توان انتظار داشت که اثربخشی این باکتریها افزایش یابد. تحقیقات در زمینه جداسازی باکتریهای آزادکننده پتاسیم بایستی ادامه داشته باشد و بایستی جدایه‌های باکتری در شرایط مختلف محیطی و در خاک‌های متفاوت مورد آزمایش قرار گیرند، تا با آزمایشاتی از این دست بتوان سویه‌های کارآمد را برای استفاده در عرضه کشاورزی معرفی نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Potassium Releasing Pseudomonads on Growth and K Uptake of Tomato in Two Soils with Different Amount of Available K

نویسندگان [English]

  • M. Deilamirad
  • Mohammad Reza Sarikhani
  • Sh. Oustan
University of Tabriz
چکیده [English]

Introduction: Potassium is a major and essential plant macronutrient and the most abundant absorbed cation in higher plants. Potassium (K) plays an important role in the growth, metabolism, and development of plants. There are three forms of potassium found in the soil viz., soil minerals, nonexchangeable and available form. Soil minerals make up more than 90 to 98 percent of soil potassium. It is tightly bound and most of it is unavailable for plant uptake. Plants can uptake potassium only from the soil solution. Many indigenous soil microorganisms have the potential to absorb and mobilize the fixed form of nutrients from trace mineral sources. The use of plant growth promoting rhizobacteria including potassium-solubilizing bacteria as a biofertilizer could work as a sustainable solution to improve plant nutrient uptake and production. In this study the effect of five isolates of Pseudomonas were assessed on the growth and K uptake of tomato in two different soils with less than 200 mg/kg and more than 400 mg/kg available potassium.
Materials and Methods In this study, two different soil, Khalat pushan (K 400 mg/kg) were used. All the isolates including S6-6, S10-3, S14-3, S19-1 and S21-1 used in this study belonged to Pseudomonas genus and their potential were examined as a potassium releasing bacteria (KRB). Bacterial isolates were cultured in NB medium and were used in pot experiments. Experiment was conducted in a completely randomized design with three replications in two different soils by application of five bacterial isolates and the control without inoculum. Tomato seeds were inoculated with bacterial isolates in non-sterile soil and in the presence of indigenous soil microflora and the experiment continued until the beginning of the reproductive phase. The rate of inoculation was 10 ml of bacteria per pot. Growth and nutritional parameters such as dry weight of shoot and root, chlorophyll index, content of K and P in plant tissue were measured. Data analysis was performed by SPSS software, and the means were compared at α꞊5% by Duncan test.
Results and Discussion: The results of statistical analysis in the soil with less than 200 mg/kg available potassium (Khalatpoushan) showed the significant effect of bacterial inoculation on chlorophyll index, shoot and root dry weight and potassium and phosphorus content in shoot and root in bacterial treatments compared to the control. The highest amount of chlorophyll index, shoot dry weight and shoot absorption of potassium and phosphorus was accounted for S21-1. The highest amount of root dry weight and root absorption of potassium and phosphorus was accounted for S14-3.The results of second experiment in soil with more than 400 mg/kg available potassium (soil collected from Kandovan) showed that the measured properties were not affected by bacterial treatments. The highest amount of chlorophyll index was achieved by S14-3. The highest uptake of shoot potassium and phosphorus were recorded in plants which were inoculated by S14-3 and S21-1; however, the differences were not significant. While in this study we did not measure released K by bacteria in in-vitro condition but in the previous studies, their ability in K releasing from mica minerals such as muscovite and biotite had been measured and reported. Production of organic acid is one mechanism which proposed to explain potassium releasing ability of potassium releasing bacteria. It seems that this mechanism has the role in P solubilization, K releasing and solubilizing other nutients by plant growth promoting rhizobacteria (PGPR).
Conclusions: These results suggested that plant growth stimulating efficiency of bacterial inoculants affected by soil nutritional condition. The bacterial inoculation had a much better stimulatory effect on plant growth in soils with low available potassium. In this experiment, two isolates, S21-1 and S14-3 were better than the other isolates. Study in this area should be done especially in isolation and identification of potassium releasing bacteria from different soil samples. In the next step, these isolates should be tested in different soils under different climate conditions of the country, to choose robust and efficient isolate and intorduce them as KSB biofertilizer in counntry. It was the first report in Iran to test Pseudomonas isolates as KSB, while in the previous studies other genera especially bacteria belonged to Bacillus was reported in Iran.

کلیدواژه‌ها [English]

  • Potassium
  • Potassium releasing bacteria
  • Pseudomonas spp
  • Tomato
Bahraini M., Dordipour E., and. Khormali F. 2006. Importance of potassium fertilizers application in agriculture of Iran. Proceedings of the 2th congress of the iran nationalon ecological gricultur, 28 Sep. 2006. Gorgan, Iran. (in Persian with English abstract).
2- Deilamirad M. 2015. Effect of potassium releasing Pseudomonads on K uptake and Tomato growth in two different soils. M.Sc. Thesis, Department of soil Science, Faculty of Agriculture, University of Tabriz. (in Persian with English abstract).
3- Rasouli Sadaghiani M.H., Sadeghi S., Barin M., Sepehr E., and Dovlati B. 2017. The effect of silicate solubilizing bacteria on potassium release from mica minerals and its uptake by corn plants. JWSS-Isfahan University of Technology, 20:89-102.
4- Sarikhani M.R., Oustan S., Aliasgharzad N., and Ebrahimi M. 2015. Screening of silicate bacteria (Potassium releasing bacteria) and assessment of high efficient isolates on growth and potassium uptake by tomato. Project at University of Tabriz.
5- Malakuti M.J., and Gheibi M.N. 2001. Determine the critical level of soil nutrient elements, plant and fruit. Research organization, Agricultural Extension and Education, Published by Amozesh, pp 56. (in Persian).
6- Aleksandrov V.G. 1958. Organo-mineral fertilizers and silicate bacteria. Dokl Akad Nauk, 7:43–48.
7- Badr M.A. 2006. Efficiency of K-feldspar combined with organic materials and silicate dissolving bacteria on tomato yield. Journal of Applied Sciences Research, 2:1191–1198.
8- Buss H.L., Luttge A., Brantley S.L. 2007 Etch pit formation on iron silicate surfaces during siderophore-promoted dissolution. Chemical Geology, 240:326–342.
9- Clarson D. 2004. Potash biofertilizer for ecofriendly agriculture. Agro-clinic and Research Centre, Poovanthuruthu, Kottayam (Kerala), pp 98–110.
10- Egamberdiyeva D. 2007. The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Applied Soil Ecology, 36(2):184-189.
11- Egamberdiyeva D., and Höflich G. 2003. Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biology and Biochemistry, 35(7):973-978.
12- Glick B.R. 1995. The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41:109–117.
13- Han H.S., Supanjani E., Lee K.D. 2006. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant, Soil and Environment, 52:130–136.
14- Herridge D.F., Peoples M.B., Boddey R.M. 2008. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311:1–18.
15- Jones J. B. 2001. Laboratory Guide for Conducting Soil Tests and Plant Analysis. CRC Press, USA.
16- Kavino M., Harish S., Kumar N., Saravanakumar D., and Samiyappan R. 2010. Effect of chitinolytic PGPR on growth, yield and physiological attributes of banana (Musa spp.) under field conditions. Applied Soil Ecology, 45:71–77.
17- Khanwilkar S.A., Ramteke J.R. 1993. Response of applied K in cereals in Maharashtra. In: Agriculture, pp 84–96.
18- Kumar A., Bahadur I., Maurya B.R., Raghuwanshi R., Meena V.S., Singh D.K. and Dixit J. 2015. Does a plant growth promoting rhizobacteria enhance agricultural sustainability. Journal of Pure Applied Microbiology, 9:715-724.
19- Lian B., Chen Y., Zhu L.J., and Yang R.D. 2008. Progress in the study of weathering of carbonate rock by microbes. Earth Science Frontiers, 15:90–99.
20- Lin Q.M., Rao Z.H., Sun Y.X., Yao J., and Xing L.J. 2002. Identification and practical application of silicate-dissolving bacteria. Agricultur Science China, 1:81–85.
21- Liu W., Xu X., Wu S., Yang Q., Luo Y., and Christie P. 2006. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture. Environmental Geochemistry and Health, 28:133–140.
22- Marques A.P., Pires C., Moreira H., Rangel A.O., and Castro M.L. 2010. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biology and Biochemistry, 42:1229–1235.
23- Mikhailouskaya N., and Tcherhysh A. 2005. K-mobilizing bacteria and their effect on wheat yield. Agronomijas Vestis (Latvia), 8:154–157.
24- Olsen S.R., and Sommers L.E, 1982. Phosphorus. P. 403-430. In A.L. Page et al. (ed.) Methods of soil Analysis. Part 2. 2nd ed. ASA and SSSA, Madison, WI.
25- Park M., Singvilay O., Seok Y., Chung J., Ahn K., and Sa T. 2003. Effect of phosphate solubilizing fungi on P uptake and growth to tobacco in rock phosphate applied soil. Korean Journal of Soil Science and Fertilizer, 36:233–238.
26- Parmar P. 2010. Isolation of potassium solubilizing bacteria and their inoculation effect on growth of wheat (Triticum aestivum L.). M.Sc. Thesis submitted to CCS Haryana Agricultural University, Hisar.
27- Prajapati K., Sharma M.C., and Modi H.A., 2013.Growth promoting effect of potassium solubilizing microorganisms on Abelmoscus esculantus. International Journal of Agriculture Sciences, 3(1):181-188.
28- Rogers J.R., Bennett P.C., and Choi W.J. 1998. Feldspars as a source of nutrients for microorganisms. American Mineralogist, 83:1532–1540.
29- Sheng X.F. 2005. Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology and Biochemistry, 37:1918–1922.
30- Sheng X.F., and He L.Y. 2006. Solubilization of potassium bearing minerals by a wild type strain of Bacillus edaphicus and its mutants and increased potassium uptake by wheat. Canadian Journal of Microbiology, 52:66–72.
31- Sindhu S.S., Dua S., Verma M.K., and Khandelwal A. 2010. Growth promotion of legumes by inoculation of rhizosphere bacteria. In Khan MS, Zaidi A, Musarrat J. (eds) Microbes for legume improvement. Springer, New York, pp 195–235.
32- Sindhu S.S., Seema Dua., and Sahu G. 2011. Biological control of plant diseases. In Rana MK. (ed) Modern concepts of vegetable production. Biotechnology Books, Daryaganj, New Delhi, pp 470–517.
33- Sindhu, S.S., Parmar, P. and Phour, M., 2014. Nutrient cycling: potassium solubilization by microorganisms and improvement of crop growth. In Geomicrobiology and Biogeochemistry (pp. 175-198). Springer Berlin Heidelberg.
34- Singh G., Biswas D.R., and Marwah T.S. 2010. Mobilization of potassium from waste mica by plant growth promoting rhizobacteria and its assimilation by maize (Zea mays) and wheat (Triticum aestivum L.). Journal of Plant Nutrition, 33:1236–1251.
35- Sparks D.L. 1987. Potassium dynamics in soils. Advances in Soil Science, 6:1- 63.
36- Sparks D.L., and Huang P.M. 1985. Physical chemistry of soil potassium. In Munson RD. (ed) Potassium in agriculture. American Society of Agronomy, Madison, WI, pp 201–276.
37- Sperberg J.I. 1958. The incidence of apatite solubilizing organisms in the rhizosphere and soil. Crop and Pasture Science; 9(6):778-81.
38- Srinivasa Rao C., Rupa T.R., Subba Rao A., Ramesh G., and Bansal S.K. 2000. Release kinetics of non-exchangeable potassium by different extractants from soils of varying mineralogy and depth. Communications in Soil Science and Plant Analysis, 37:473-491.
39- Sugumaran P., and Janarthanam B. 2007. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World Journal of Agricultur Science, 3(3):350–355.
40- Vessey K.J 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 25:557–586.
41- Waling I., Vark W.V., Houba V.J.G., and Van der lee J.J. 1989. Soil and Plant Analysis, a series of syllabi. Part 7. Plant Analysis Procedures, Wageningen Agriculture University, Netherland.
42- Wall D.H., and Virginia R.A. 1999. Control of soil biodiversity: in sight from extreme environments. Applied Soil Ecology, 13:137–150.
43- Wu S.C., Caob Z.H., Lib Z.G., Cheunga K.C., and Wonga, M.H. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125:155–166.
44- Zhang C.J., Tu G.Q., and Cheng C.J. 2004. Study on potassium dissolving ability of silicate bacteria. Journal of Shaoguan University (Social Science), 26:1209–1216.
45- Zhang C,. and Kong F. 2014. Isolation and identification of potassium-solubilizing bacteria from tobacco rhizospheric soil and their effect on tobacco plants. Applied Soil Ecology, 82:18-25.
CAPTCHA Image