ارزیابی فسفر زیست‌فراهم جلبک (Senedesmusobliquus) با عصاره‌گیرهای شیمیایی در رسوبات رودخانه‌های غرب حوضة آبخیز دریاچه ارومیه

نوع مقاله : مقالات پژوهشی

نویسندگان

1 دانشگاه ارومیه

2 ارومیه

چکیده

فسفر یک عنصر غذایی ضروری برای تمامی جانداران می‌باشد و در زیست‌بوم‌های آبی به شمشیر دولبه‌ای می‌ماند، که از سویی می‌تواند عامل محدودکننده رشد جاندارن و در شرایط دیگر، موجب آلودگی و ایجاد پدیده سرشارسازی در پیکره‌های آبی شود. گزارش‌های مکتوب و عینی از پدیده شکوفایی جلبکی در تالاب‌ها و رودخانه‌های غرب دریاچه ارومیه وجود دارد. با توجه به عدم وجود پژوهشی جامع در رابطه با وضعیت فسفر زیست-فراهم در رسوبات رودخانه‌ای در منطقه، این مطالعه با هدف ارزیابی مقدار فسفر زیست‌فراهم در 34 نمونه از رسوبات رودخانه‌ای و با استفاده از 7 روش عصاره‌گیری مختلف انجام و روش مناسب عصاره‌گیری با کاربردآزمون جلبکی تعیین شد. نتایج نشان داد که ویژگی‌های فیزیکی و شیمیایی رسوبات و به ویژه بافت آن‌ها دارای دامنه‌ی بسیار وسیعی است. میانگین مقادیر کمّی فسفر استخراج شده با استفاده از روش‌های مختلف به ترتیب؛ بری 2 < دی تی پی ای < اولسن < هیدرواکسید سدیم < مهلیچ 3 < کالول بود. آزمون همبستگی موید رابطه معنی‌دار بین مقادیر فسفر استخراج شده در اغلب روش‌های عصاره‌گیری بود. علاوه بر همبستگی معنی‌داری(001/0>P، 93/0=r) از نظر کمی مقدار فسفر استخراج شده به روش اولسن و مهلیچ 3 نیز مشابهت داشت. آزمون جلبکی نشان داد که در بین شاخص‌های مختلف فسفر زیست‌فراهم، مقدار فسفر عصاره‌گیری شده به روش کاول رابطه بسیار معنی‌داری(001/0>P، 67/0=r2) با جمعیّت جلبک (Senedesmusobliquus) در محیط کشت وجود داشت. در مجموع براساس یافته‌های این پژوهش می‌توان روش کاول را به عنوان مناسب‌ترین روش ارزیابی فسفر زیست‌فراهم جلبکی در رودخانه‌‌های غرب دریاچه ارومیه پیشنهاد نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Estimating BioavailablePhosphorus by Some Chemical Extraction Methods for Algae (Senedesmusobliquus) in Western River Sediments of the Lake Urmia Basin

نویسندگان [English]

  • H. Arfania 1
  • Abbas Samadi 2
  • F. Asadzadeh 1
  • E. Sepehr 1
1 Urmia University
2 Urmia
چکیده [English]

Introduction: Phosphorus (P) is an essential nutrient for all life forms. In aquatic environments, P is a double-edged sword. In some areas, habitat biodiversity is strongly limited by low P bioavailability, while in others, P inputs in excess of plant needs have led to pollution of water bodies and eutrophication. There is little information available on P status in river sediments by single chemical extraction and its correlation with algae growth in Iran. This study was performed to select proper single chemical extraction methods by algal bioassay. The quantity of P estimated by different extractions methods depends on sediment characteristics such as calcium carbonate, pH, clay and organic matter contents. Therefore, this study was conducted in western rivers of the Lake Urmia to get an insight into P status in sediments by using single chemical and biological P assay.
Materials and Methods: The lakeUrmia basin has the second largest water resources in Iran with Mediterranean climate. Italso has the largest hypersaline lake in the world. There is a significant phytoplankton growth and also some dense algal blooms occurring during years with low salinity in wetlands and lagoons. Thirty four river sediment samples from seven main rivers of the Lake Urmia basin were collected from depth of 0-10 cm to evaluate algae (SenedesmusObliquus) P bioavalability by single chemical extraction. Selection of extractantis based on different mechanism of extraction. Cluster analysis was conducted on 17 sediment samples selected for algal bioassay.Pearson simple correlation and multivariate analysis were also performed.
Results and Discussion:Average total P concentrations of the sediments were343-654, 456 mg kg-1. Sodium bicarbonate 0.5 Mextractable P (Olsen-P) varied from 0.48 to 8.42 mg kg-1. Sediments from upper reach had considerably higher total and bioavailable P concentration in comparison with lower reach sediment. The low reach sediments of two rivers had higher Olsen extractable P than the threshold value of 20 mg kg-1indicating possible release which poses a threat to aquatic environment.Upper reach sediments had higher restoration potential, but algal bloom was observed in low reach part of rivers, particularly Simineh and Mahabad Chai. Land use changes, discharge of sewage from rural and urban section, industrial activity and cycling of river borne P are the main reasons for algal bloom in wetlands and lagoons around the lake.Principal component analysis (PCA) performed on the data identified three PC which explained 83.3% of total variation and silt and sand had higher loading values. Active calcium carbonate equivalent (ACCE) was negatively correlated with sand in the first PC. Different extractions were positively correlated with each other. The Mehlich III and Olsen-P extraction methods were significantly correlated and the predicted values were same. The average rank order of P extraction by singleextractantswas Cowell >Mehlich III >NaOH 0.1 M > Olsen > Morgan > AB-DTPA > Bray II.Extractants had different long-term and short-term potential to extract algal available P. The Cowell extractable P concentrations of sediments varied from 1.44 to 88.0 mg kg-1.This extractant was correlated significantly with algal growth and selected as the best P single extraction method among allextractants. The high correlation between 0.1 M NaOH and algae growth indicates the sensitivity of P bioavailability to redox conditions in river system. Algae (SenedesmusObliquus) was able to use P from different sediment components because its growth was correlated with Cowell, Mehlich III, NaOH 0.1M, Olsen and Morgan.
Conclusion: Legacy P (sediment P) evaluation by chemical extractants gives new insight into P bioavailability in river sediments of the Urmia Lake. The results of this work showed that Cowell extractant could be used to estimate algal available P in studied river sediments. Similarity between Olsen-P and Mehlich-P in estimating bioavailable P suggests that Mehlich III-P can be substituted for Olsen-P in studied sediments.For sustainable P management, monitoring P status by single chemical extraction methods is necessary. Phosphorous fertilizer application around the Lake Urmia basin lands should be conducted based onthe P soil test to avoid any aquatic pollution. Care must be taken in lower reach river sediments because of fragile ecosystems such as wetlands and lagoons. Further investigations are also needed to evaluate legacy P bioavailability by temporal and spatial variability.

کلیدواژه‌ها [English]

  • Bioavailability
  • Extraction
  • Algal Growth
  • suitable
1- Anderson B.H., and Magdoff F.R. 2005. Autoclaving soil samples affects algal-available phosphorus. Journal of Environmental Quality. 34(6):1958-1963.
2- Asadzadeh F., and Samadi A. 2016. Analysis of Physicochemical Properties of Sediments Trapped in Successive Check Dams. Iranian Journal of Soil and Water Research. 47(2):293-306. (in Persian with English abstract).
3- Bauycos G.J. 1962. Hydrometer methods improved for making particle size of soils. Agronomy Journal. 56:464-465.
4- Bray R.H., and Kurtz L.T. 1945. Determination of total, organic, and available forms of phosphorus in soils. Soil science. 59(1):39-46.
5-Buondonno A., Coppola E., Felleca D., and Violante P. 1992. Comparing tests for soil fertility: 1. Conversion equations between Olsen and Mehlich 3 as phosphorus extractants for 120 soils of south Italy 1. Communications in Soil Science and Plant Analysis. 23(7-8):699-716.
6- Chamberlain W., and Shapiro J. 1969. On the biological significance of phosphate analysis; comparison of standard and new methods with a bioassay. Limnology Oceanography. 14(6):921-927.
7- Cowell J.D. 1963. The estimation of phosphorus fertilizer requirements of wheat in southern New South Wales by soil analysis. Australian Journal of Experimental Agriculture and Animal Husbandry. 3:190-197.
8- Cowen W.F., and Lee G.F. 1976. Phosphorus availability in particulate materials transported by urban runoff. Journal (Water Pollution Control Federation). 580-591.
9- DeLuca T.H., Glanville H.C., Harris M., Emmett B.A., Pingree M.R., de Sosa L.L., Morenà C., and Jones D.L. 2015. A novel biologically-based approach to evaluating soil phosphorus availability across complex landscapes. Soil Biology and Biochemistry. 88:110-119.
10- Ding-Sie T., and Appan, A. 1996. General characteristics and fractions of phosphorus in aquatic sediments of two tropical reservoirs. Water Science and Technology. 34(7-8):53-59.
11- Ekholm P., and Krogerus K. 2003. Determining algal-available phosphorus of differing origin: routine phosphorus analyses versus algal assays. Hydrobiologia. 492(1-3):29-42.
12- Ekholm P., Jouttijärvi T., Priha M., Rita H., and Nurmesniemi H. 2007. Determining algal-available phosphorus in pulp and paper mill effluents: Algal assays versus routine phosphorus analyses. Environmental pollution, 145(3):715-722.
13- Ekholm P., and Lehtoranta J. 2012. Does control of soil erosion inhibit aquatic eutrophication?. Journal of Environmental Management. 93(1):140-146.
14- Ellis B.K., and Stanford J.A. 1988. Phosphorus bioavailability of fluvial sediments determined by algal assays. Hydrobiologia, 160(1):9-18.
15- Elser J.J., Bracken M.E.S., Cleland E.E., Gruner D.S., Harpole W.S., Hillebrand H., Ngai J.T., Seabloom E.W., Surin J.B., and Smith J.E. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letter. 10(12):1135-1142.
16- Fabre A., Qotbi A., Dauta A., and Baldy V. 1996. Relation between algal available phosphate in the sediments of the River Garonne and chemically determined phosphate fractions. Hydrobiologia. 335:43-48.
17- Jalali M., and Jalali M. 2016. Relation between various soil phosphorus extraction methods and sorption parameters in calcareous soils with different texture. Science of the Total Environment. 566-567:1080-1093.
18- Joshi S.R., Kukkadapu R.K., Burdige D.J., Bowden M.E., Sparks D.L., and Jaisi, D.P. 2015. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake Bay. Environmental science and technology, 49(10):5887-5896.
19- Loeppert R.H., and Suarez D.L. 1996. Carbonate and Gypsum. p.437-474. In D. L. Sparks. (ed) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA, NO.5, Madison.
20- Li B., and Brett M.T. 2015. The relationship between operational and bioavailable phosphorous fractions in effluents from advance nutrient removal systems. International Journal of Environmental Technology. 12:3317-3328.
21- Lu D., Guo P., Ji J., Liu L., and Yang P. 2016. Evaluation of phosphorus distribution and bioavailability in sediments of a subtropical wetland reserve in southeast China. Ecological Indicators. 66:556-563.
22- Magdoff F.R., Hryshko C., Jokela W.E., Durieux R.P., and Bu Y. 1999. Comparison of phosphorus soil test extractants for plant availability and environmental assessment. Soil Science Society of America Journal. 63:999-1006.
23- Mallarino A.P., and Blackmer A.M. 1992. Comparison of methods for determining critical concentrations of soil test phosphorus for corn. Agronomy Journal. 84:850-856.
24- Mallarino A.P. 1995. Comparison of Mehlich-3, Olsen, and Bray-P1 procedures for phosphorus in calcareous soils. In The 25th North Central extension-industry soil fertility conference, St. Louis, Missouri.
25- McDowell R.W., and Sharpley, A.N. 2001. A comparison of fluvial sediment phosphorus (P) chemistry in relation to location and potential to influence stream P concentrations. Aquatic Geochemistry. 7(4):255-265.
26- McDowell R., Sharpley A., Brookes P., and Poulton P. 2001. Relationship between soil test phosphorus and phosphorus release to solution. Soil Science. 166(2):137-149.
27- Mehdizadeh L., Asadzadeh F., Samadi A. 2015. Application of mathematical models to describe the particle size distribution of sediments behind successive check dams. Watershed Engineering and Management. 6(4):323-336. (in Persian with English abstract)
28- Mehlich A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communications in Soil Science and Plant Analysis. 15(12):1409-1416.
29- Miller W.E., and Greene J.C. 1978. The Selenastrum capricornutum Printz algal assay bottle test: Experimental design, application, and data interpretation protocol (Vol. 78, No. 18). Environmental Protection Agency, Office of Research and Development, Corvallis Environmental Research Laboratory.
30- Morgan M.F. 1941. Chemical soil diagnosis by universal soil testing. Bull. 450. Connecticut Agricultural Experiment Station. New Haven.
31- Officer C.B., Biggs R.B., Taft J.L., Cronin L.E., Tyler M.A., and Boynton, W.R. 1984. Chesapeake Bay anoxia: origin, development, and significance. Science. 223(6).
32- Okubo Y., Inoue T., and Yokota K. 2012. Estimating bioavailability of soil particulate phosphorus to Microcystis aeruginosa. Journal of Applied Phycology. 24:1503-1507.
33- Olsen S.R., and Sommers L.E. 1982. Phosphorus. P. 403-430. In A.L., Page et al. (ed.) Methods of soil analysis. Part 2. 2nd ed. Agron. Monogr. 9. ASA and SSSA, Madison, WI.
34- Palmer-Felgate E.J., Jarvie H.P., Withers P.J., Mortimer R.J., and Krom M.D. 2009. Stream-bed phosphorus in paired catchments with different agricultural land use intensity. Agriculture Ecosystems and Environment. 134(1):53-66.
35- Pizzeghello D., Berti A., Nardi S. and Morari F. 2011. Phosphorus forms and P-sorption properties in three alkaline soils after long-term mineral and manure applications in north-eastern Italy. Agriculture Ecosystems and Environment, 141(1):58-66.
36- Redfield A.C. 1958. The biological control of chemical factors in the environment. American Scientist. 46:205-221.
37- Robinson J.S., Sharpley A.N., Smith S.J. 1994. Development of a method to determine bioavailable phosphorus loss in agricultural runoff. 47:287-297.
38- Rowell D.L., 1994. Soil science: methods and application, part 7: Measurement of the composition of soil solution.
39- Sagher A. 1976. Availability of soil runoff phosphorus to algae. PhD. Thesis. Univ. of Wisconsin, Madison.
40- Schindler D.W., Hecky R.E., Findlay D.L., Stainton M.P., Parker B.R., Paterson M.J., Beaty K.G., Lyng M., Kasian S.EM. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen results of a 37 year whole-ecosystem experiment. Proceedings of the National Academy of Science. USA. 105(32):11254-11258.
41- Sharpley A.N., Ahuja L.R., Yamamoto M., Menzel R.G. 1981. The kinetics of phosphorus desorption from soil. Soil Science Society of America Journal. 45:439-496.
42- Sharpley A.N., Troeger W.W., Smith S.J. 1991. The measurement of bioavailable phosphorus in agricultural runoff. Journal Environmental Quality. 20(1):235-238.
43- Sharpley A.N. 1993. An innovative approach to estimate bioavailable phosphorus in agricultural runoff using iron oxide-impregnated paper. Journal of Environmental Quality, 22(3):597-601.
44- Sharpley A., Jarvie H.P., Buda A., May L., Spears B. Kleinman P.J.A. 2013. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. Journal Environmental Quality. 42: 1308-1326.
45- Sims J.T. 1996. Lime requirement. p.491-516. In D. L. Sparks. (ed) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA, NO.5, Madison.
46- Sims J.T. 2000. Soil test phosphorus: Olsen P. In: Pierzynski G.M. (Ed.), Methods of Phosphorus Analysis for Soils, Sediments, Residuals and Waters. Southern Cooperative Series Bull. No. 396. Kansas State University of Manhattan, pp. 20–21
47- Sims J.T., Maguire R.O., Leytem A.B., Gartley K.L., and Pautler M.C., 2002. Evaluation of Mehlich 3 as an agri-environmental soil phosphorus test for the Mid-Atlantic United States of America. Soil Science Society of America Journal, 66(6):2016-2032.
48- Sotomayor-Ramirez D., Martinez G.A., Mylavarapu R.S., Santana O., and Guzman, J.L. 2004. Phosphorus soil tests for environmental assessment in subtropical soils. Communications in soil science and plant analysis. 35(11-12):1485-1503.
49- Soltanpour P.A., and Schwab, A.P., 1977. A new soil test for simultaneous extraction of macro‐and micro‐nutrients in alkaline soils 1. Communications in Soil Science and Plant Analysis, 8(3):195-207.
50- Rowell D.L., 1994. The preparation of saturation extracts and the analysis of soil salinity and sodicity. Soil science methods and applications. ed. DL Rowell. Longman Group, UK.
51-Thomas G.W. 1996. Soil pH and Soil Acidity. p.475-490. In D. L. Sparks. (ed) Methods of Soil Analysis. Part 3. Chemical Methods. SSSA, NO.5, Madison.
52- Upreti K., Joshi S.R., McGarth J., and Jaisi. D.P. 2015. Factors controlling phosphorus mobilization in a coastal plain tributary to the Chesapeake Bay. Soil Science Society of America Journal. 79:826-837.
53- Wang X. 2012. Phosphorus Fractionation and Bio-availability in Surface Sediments from the Middle and Lower Reaches of the Yellow River. Procedia Environmental Sciences. 12:379-386.
54- Yan X., Wang D., Zhang H., Zhang G., and Wei Z. 2013. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture ecosystems and environment, 175:47-53.
55- Yan X., Wei Z., Wang D., Zhang G., and Wang J. 2015. Phosphorus status and its sorption-associated soil properties in a paddy soil as affected by organic amendments. Journal of Soils and Sediments. 15(9):1882-1888.
56- Zhou Q., Gibson C.E., and Zhu Y. 2001. Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere, 42(2):221-225.
CAPTCHA Image