سید سعید اخروی سید سعید اسلامیان نادر فتحیان پور


بررسی رفتار هیدرولیکی داخلی سامانه تالاب مصنوعی زیرسطحی افقی در جهت بهینه‌سازی طراحی امری ضروری است. بدین منظور، این پژوهش اثرات نحوه توزیع جریان ورودی را در سه آرایش متفاوت شامل: (A) حالت ورودی وسط، (B) ورودی گوشه و (C) ورودی یکنواخت به صورت آزمایشی و عددی بررسی نمود. در تمامی حالات، خروجی در وسط سامانه ثابت بوده است. شبیه‌سازی عددی بر پایه معادله جریان زیر سطحی در محیط‌های متخلخل (دارسی) با نرم‌افزار کامسول انجام و سپس توسط داده‌های آزمایشی واسنجی شد. تحلیل منحنی زمان ماند حاصل از مطالعه آزمایشی نشان داد که توزیع یکنواخت جریان با افزایش پخشیدگی جریان و کاهش مسیرهای میان­بر سبب افزایش زمان ماند میانگین و در نتیجه راندمان هیدولیکی سامانه می‌شود. شبیه‌سازی جریان داخلی این آرایش نیز حاکی از توزیع همگون فشار و خطوط جریان در طول سامانه می‌باشد. دامنه تغییرات فشار درون سامانه در سه آرایش به ترتیب 14، 12 و 10 سانتی‌متر آب است. اختلاف زیاد فشار در نواحی پرفشار و کم­فشار در آرایش ورودی گوشه ناشی از توزیع ناهمگون جریان ورودی بوده که با ایجاد مسیرهای میان­بر متعدد سبب کاهش زمان ماند میانگین و حجم مؤثر در سامانه می‌شود. حجم مؤثر در این آرایش 1/62 درصد می‌باشد در حالی که در دو آرایش دیگر 5/87 درصد است. با توجه به تعریف جریان ایده‌آل در تالاب مصنوعی می‌توان نتیجه گرفت که ورودی یکنواخت به جهت پخشیدگی جریان بالاتر، حجم مرده و میزان مسیرهای میان­بر کمتر به عنوان بهترین آرایش ورودی جریان شناخته می­شود و سپس آرایش ورودی وسط دارای عملکرد مناسبی می‌باشد.

جزئیات مقاله

کلمات کلیدی

آرایش ورودی جریان, تغییرات فشار, زمان ماند هیدرولیکی, شبیه‌سازی, مسیرهای میان‌بر

1. Bruun J., Pugliese L., Hoffmann C.Ch.,Kjaergaard Ch. 2016. Solute transport and nitrate removal in full-scale subsurface flow constructed wetlands of various designs treating agricultural drainage water.Ecological Engineering, 97: 88-97.
2. Chang T.C., Chang Y.H., Lee W.T., and Shih S.S. 2016. Flow uniformity and hydraulic efficiency improvement of deep-water constructed wetlands, Ecological Engineering.92: 28-36.
3. Eslamian S.S., Davari S., Okhravi S.S., and TarkeshIsfahani S. 2012. Phytoremediation through the mechanism of trace metals absorption in artificial wetland. p. 53-57. 1th Iranian National Conference on Phytoremediation, 16 Feb. 2012. Kerman, Iran. (in Persian with English abstract)
4. Galvão A.F., Matos J.S., Ferreira F.S., and Correia F.N.2010. Simulating flows in horizontal subsurface flow constructed wetlands operating in Portugal.Ecological Engineering, 36: 596-600.
5. Giraldi D., Vitturi M.D.M., and Iannelli R. 2010. FITOVERT: A dynamic numerical model of subsurface vertical flow constructed wetlands. Environmental Modelling Software, 25:633-640.
6. Guo C.Q., Dong B., Liu J.J., and Liu F.P. 2015. The best indicator of hydraulic short-circuiting and mixing of constructed wetlands. Water Practice and Technology, 10(3): 505-516.
7. Jafet Rodríguez D., GiácomanVallejos G., and Champagne P. 2012. Assessment of the plug flow and dead volume ratios in a sub-surface horizontal-flow packed-bed reactor as a representative model of a sub-surface horizontal constructed wetland. Ecological Engineering, 40: 18-26.
8. Kadlec R.H., and Knight, R.L. 2006. Treatment wetlands, 1st ed. Lewis Publishers, FL.
9. Kadlec R.H., Pries J., and Lee K. 2012. The Brighton treatment wetlands. Ecological Engineering, 47: 56-70.
10. Liolios K.A., Moutsopoulos K.N., and Tsihrintzis V.A. 2012. Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 202: 681-693.
11. MæhlumT., and Jenssen P.D. 2003. Design and performance of integrated subsurface flow wetlands in a cold climate, WIT Press, Southampton, UK.
12. Okhravi S.S., EslamianS.S., and MohammadzadeMiyab N. 2015. Investigation and comparison between applications of different type of constructed wetland for wastewater treatment. Water Engineering Conference and Exhibition, 18 Oct. Tehran, Iran. (in Persian with English abstract)
13. Person J. 2000. The hydraulic performance of ponds of various layouts. Urban Water Journal, 2(2000): 243-250.
14. PerssonJ., and Wittgren H.B. 2004. How hydrological and hydraulic conditions affectperformance of ponds. Ecological Engineering,21: 259-269.
15. Persson J., Somes N.L.G., and Wong T.H.F. 1999. Hydraulic efficiency of constructed wetlands and ponds. Water Science and Technology, 40(3): 291-299.
16. Rengers E.E., Da Silva J.B., Paulo P.L., and Janzen J.G. 2016. Hydraulic performance of a modified constructed wetland system through a CFD-based approach. Journal of Hydro-environment Research, 12: 91-104.
17. SamsóR., and García J. 2013. Bacteria distribution and dynamics in constructed wetlands based on modelling results. Science of the Total Environment, pp: 430-440.
18. SamsóR., and García J. 2014. The Cartridge Theory: A description of the functioning of horizontal subsurface flow constructed wetlands for wastewater treatment, based on modelling results. Science of the Total Environment, 473: 653-658.
19. Su T.M., Yang Sh., Shih S., and Lee H. 2009. Optimal design for hydraulic efficiency performance of free-water-surface constructed wetlands. Ecological Engineering, 35: 1200-1207.
20. Suliman F., French H., Haugen L.E., Klove B., and Jenssen P. 2005. The effect of the scale of horizontal subsurface flow constructed wetlands on flow and transport parameters. Water Science and Technology, 51(9): 259-266.
21. Suliman F., French H.K., Haugen L.E., and Søvik A.K. 2006. Change in flow and transport patterns in horizontal subsurface flow constructed wetlands as a result of biological growth. Ecological Engineering, 27: 124-133.
22. VorkasC., and Lloyd B. 2000. The application of a diagnostic methodology for the identification of hydraulic design deficiencies affecting pathogen removal. Water Science and Technology, 42(10): 99-109.
23. Vymazal j. 2009. The use constructed wetlands with horizontal sub-surface flow for various types of wastewater. Ecological Engineering, 35: 1-17.
24. Weidner C., Naurath L., Rude T., and Banning A. 2011. A new approach to quantify Na-Fluorescein (Uranine) in acid mine waters. Mine Water Environment, 30: 231-236.
ارجاع به مقاله
اخرویس. س., اسلامیانس. س., & فتحیان پورن. (2019). مطالعه عددی و آزمایشی رفتار هیدرولیکی تالاب مصنوعی زیرسطحی افقی در توزیع‌های متفاوت جریان. آب و خاک, 32(6), 1041-1054. https://doi.org/10.22067/jsw.v32i6.60864
نوع مقاله
علمی - پژوهشی