بررسی فرآیند معدنی شدن نیتروژن آلی تحت تأثیر نوع و مقدار رس و نوع کاتیون تبادلی

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه زنجان

چکیده

کانی‌های رسی تأثیر زیادی بر پویایی ماده آلی خاک دارند و رس‌ها با حفاظت فیزیکی از ماده آلی سرعت تجزیه آن را کاهش می‌دهند. هدف این پژوهش بررسی تأثیر نوع و مقدار رس و نوع کاتیون تبادلی بر معدنی شدن نیتروژن آلی و مقدار نیتروژن زیست‌توده میکروبی بود. برای این منظور مقادیر مشخصی از کانی‌های رسی کائولینیت، ایلیت و مونت‌موریلونیت اشباع شده با کاتیون‌های سدیم، کلسیم و آلومینیوم با شن خالص مخلوط شدند تا خاک‌های مصنوعی با مقدار رس، کاتیون تبادلی و نوع رس متفاوت در سه تکرار تهیه شود. آزمایش به‌صورت فاکتوریل در قالب طرح کاملاً تصادفی (3×3×3) اجرا شد. بقایای گیاهی یونجه به خاک‌های مصنوعی اضافه و خاک‌ها با فلور میکروبی یک خاک طبیعی تلقیح و به مدت 60 روز خوابانیده شدند و مقدار نیتروژن آمونیومی و نیتراتی هر 15 روز یک‌بار اندازه‌گیری شدند. نتایج نشان داد در مدت دو ماه خوابانیدن، درصد نیتروژن معدنی شده، در شن خالص بیشتر از خاک‌هایی با مقادیر 5 و 10 درصد رس بود که این امر نشان می‌دهد مقدار رس بر ظرفیت خاک‌ها در نگهداشت نیتروژن آلی مؤثر است. نتایج همچنین نشان داد که با افزایش مقدار رس، مقدار نیتروژن زیست‌توده میکروبی افزایش یافت. بیشترین و کمترین درصد نیتروژن معدنی شده و نیتروژن زیست‌توده میکروبی به ترتیب در خاک‌هایی با کاتیون‌های تبادلی کلسیم و آلومینیوم اندازه‌گیری شدند. درصد نیتروژن معدنی شده در مدت دو ماه خوابانیدن در خاک‌هایی با رس کائولینیت حداکثر و در خاک‌هایی با رس مونت‌موریلونیت حداقل بود. مقدار نیتروژن زیست‌توده میکروبی نیز در خاک‌هایی با رس مونت‌موریلونیت کمتر از خاک‌هایی با رس کائولینیت و ایلیت بود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Mineralization of Organic Nitrogen under the Influence of Type, Content of Clay and Exchangeable Cations

نویسندگان [English]

  • Fatemeh Rakhsh
  • Ahmad Golcchin
University of Zanjan
چکیده [English]

Introduction: Mobilization and stabilization of organic matter in soils represent a set of complex processes involving the processing and decomposition of organic matter by diverse communities of soil fauna and microorganisms, as well as chemical-physical interactions with mineral particles of soil. Clay minerals have high effects on the soil organic matter dynamics. Clay minerals with the physical protection of organic matter play an important role in reducing the rate of decomposition of organic matter. The effects of soil texture on the soil organic matter dynamics have been investigated in many studies, but the effects of exchangeable cations and clay types on mineralization of organic nitrogen and microbial biomass nitrogen have not been given much attention. For this reason, the aim of this study was to evaluate the effects of types and clay contents and exchangeable cations on the mineralization of organic nitrogen and microbial biomass nitrogen.
Material and Methods: Appropriate amounts of homoionic Na-, Ca- and Al- clays from Georgia kaolinite, Illinois illite and Wyoming montmorillonite were mixed with pure sand to prepare artificial soils with different clay contents, exchangeable cations, and clay types. The artificial soils have zero, 5 and 10% clay from Georgia kaolinite, Illinois illite and Wyoming montmorillonite that their clay minerals saturated with Ca, Na and Al. Alfalfa plant residues were incorporated into the artificial soils and the soils were inoculated with microbes from a natural soil and incubated for 60 days and concentration of NH4-N and NO3-N were measured every 15 days. In the artificial soil samples, microbial biomass nitrogen was measured by the fumigation-extraction method in the end time of incubation period.
Results and Discussion: The results of this study showed that the percentage of mineralized nitrogen in the two-month incubation period, was higher in the pure sand than in soils containing 5% and 10% clay, indicating that clay contents influence the capacity of soils to protect and store organic nitrogen. Microbial biomass nitrogen increased as the amount of clay in the soil increased. The highest and lowest amounts of microbial biomass nitrogen measured in soils with 10% clay (9.26 mg per 50 g dry soil) and pure sand (4.31 mg per 50 g dry soil), respectively. There was a significant influence of exchangeable cations on the percentage of mineralized nitrogen and microbial biomass nitrogen. The microbial biomass nitrogen and the percentage of mineralized nitrogen were highest in Ca-soils and lowest in Al-soils. The percentage of mineralized organic nitrogen in two months of incubation period was highest in soils with Georgia kaolinite clay and lowest in soil with Wyoming montmorillonite clay. The amounts of microbial biomass nitrogen in soils with Wyoming montmorillonite clay were lower than soils with Georgia kaolinite and Illinois illite clays. The percentage of mineralized organic nitrogen increased as the incubation period increased. The results of this study indicated that organic nitrogen mineralization rates and microbial biomass nitrogen were affected by types and clay contents and exchangeable cations and interaction of organic matter with clays and is an important process as it slows soil organic matter decomposition.
Conclusions: Mixing the alfalfa residues with artificial soils and incubation samples allowed to study the effects of types and clay contents and exchangeable cations on the percentage of NH4+-N, NO3--N, mineralized nitrogen, and microbial biomass nitrogen. Soils with different clay contents have different surface areas and cation exchange capacities; therefore, it is concluded that organic nitrogen storage of soils is, partly, controlled by the surface areas, cation exchange capacity and physical protection provided by the soils. Nitrogen mineralization and the amounts of microbial biomass nitrogen were different in soils with different exchangeable cations. It is concluded that exchangeable cations exert their influence on microbial biomass and hence nitrogen dynamics by controlling the size and activity of the microbial population through modifying the physicochemical characteristics of microbial habitats. Since various clay minerals have different specific surface areas and cation exchange capacity and the physicochemical changes induced in the soil environment as a result of variations of exchangeable cations is much greater in soils with higher cation exchange capacity and specific surface area. It seems the effects of clay mineralogy on the dynamics of organic materials and microbial biomass, in part, arise from the type of exchangeable cations present on the exchange sites of the clay minerals.

کلیدواژه‌ها [English]

  • Ammonium
  • Biomass
  • Cation exchange capacity
  • Nitrate
  • Specific surface
1- Alef K., and Nannipieri P. 1995. Methods in Applied Soil Microbiology and Biochemistry, Academic Press, London.
2- Anderson J.M., and Ingram J.S.I. 1993. In Tropical Soil Biology and Fertility: A Handbook of Methods, CAB International, Wallingford, U. K.
3- Baldock J.A., and Skjemstad J.O. 2000. Role of the soil matrix and minerals in protecting natural organic materials against biological attack, Journal of Organic Geochemistry, 31: 697-710.
4- Barre P., Fernandez-Ugalde O., Virto I., Velde B., and Chenu C. 2014. Impact of phyllosilicate mineralogy on organic carbon stabilization in soils: incomplete knowledge and exciting prospects, Geoderma, 235-236: 382-395.
5- Brooks P. C., Kragt J. F., Powlson D. S., and Jenkinson D. S. 1985. Chloroform fumigation and the release of soil nitrogen. The effects of fumigation time and temperate, Journal of Soil Biology and Biochemistry, 17(6): 831-835.
6- Bruun T.B., Elberling B., and Christensen B.T. 2010. Labiality of soil organic carbon in tropical soils with different clay minerals, Journal of Soil Biology and Biochemistry, 42: 888-895.
7- Chorom M., and Rengasamy P. 1995. Dispersion and zeta potential of pure clays as related to net particle charge under varying pH, electrolyte concentration and cation type, European Journal of Soil Science, 46(4): 657-665.
8- Cotrufo M.F., Wallenstein M.D., Boot C.M., Denef K.D., and Paul E. 2013. The Microbial efficiency matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter, Global Change Biology, 19: 988-995.
9- Deb S.K., and Shukla M.K. 2011. A review of dissolved organic matter transport processes affecting soil and environmental quality, Journal of Environmental and Analytical Toxicology, 1 (2): 1-11.
10- Deenik J. 2006. Nitrogen mineralization potential in important agricultural soils of Hawaii, Soil and Crop Management, 16: 1-5.
11- Denef K., and Six J. 2005. Clay mineralogy determines the importance of biological versus abiotic processes for macro aggregate formation and stabilization, European Journal of Soil Science, 56: 469-479.
12- Denef K., Six J., Merckx R., and Paustian K. 2002. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy, Journal of Plant and Soil, 246: 185-200.
13- El-Sharkawi H.M. 2012. Effect of nitrogen sources on microbial biomass nitrogen under different soil types, ISRN Soil Science. 1-7.
14- Eltantawy I.M. and Arnold P.W. 1973. Reappraisal of ethylene glycol mono-ethyl ether (EGME) method for surface area estimation of clays, Journal of Soil Science, 24: 232-238.
15- Feng W., Plante A., and Six J. 2013. Improving estimates of maximal organic carbon stabilization by fine soil particles, Biogeochemistry, 112: 81-93.
16- Fontaine S., and Barot S. 2005. Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation, Ecology Letters, 8: 1075-1087.
17- Golchin A., Clarke P., and Oades J.M. 1996. The heterogeneous nature of microbial products as shown by solid-state 13C CPIMAS NMR spectroscopy, Biogeochemistry, 34: 71-97.
18- Grandy A.S., Strickland M.S., Lauber C.L., Bradford M.A., and Fierer N. 2009. The influence of microbial communities, management, and soil texture on soil organic matter chemistry, Geoderma, 150: 278-286.
19- Houlton B.Z., and Morford S.L. 2015. A new synthesis for terrestrial nitrogen inputs, Journal of Soil, 1: 381-397.
20- Jackson M.L. 1979. Soil Chemical Analysis, Advanced Course, Prentice Hall incorporated. p. 895.
21- Jansen B., Nierop K.G.J., and Verstraten J.M. 2002. Influence of pH and metal/carbon ratios on soluble organic complexation of Fe (II), Fe (III) and Al (III) in soil solutions determined by diffusive gradients in thin films, Analytica Chimica Acta, 454: 259-270.
22- Kahle M., Kleber M., and Jahn R. 2004. Retention of dissolved organic matter by phyllosilicate and soil clay fractions in relation to mineral properties, Organic Geochemistry, 35: 269-276.
23- Kaiser K., and Guggenberger G. 2003. Mineral surfaces and soil organic matter, European Journal of Soil Science, 54: 219-236.
24- Kalisz B., Lachacz A., and Glazewski R. 2010. Transformation of some organic matter components in organic soils exposed to drainage, Turkish Journal of Agriculture and Forestry, 34: 245-256.
25- Kleber M., Sollins P., and Sutton R. 2007. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces, Biogeochemistry, 85: 9-24.
26- Knicker H. 2011. Soil organic N an under-rated player for C sequestration in soils, Journal of Soil Biology and Biochemistry, 43: 1118-1129.
27- Kögel-Knabner I., Guggenberger G., Kleber M., Kandeler E., Kalbitz K., Scheu S., Eusterhues K., and Leinweber P. 2008. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry, Journal of Plant Nutrition and Soil Science, 171: 61-82.
28- Masion A., Vilgea-Ritter A., Rose J., Stone W.E., Teppen E.B.J., Rybacki D., and Bottero J.E.Y. 2000. Coagulation-flocculation of natural organic matter with Al salts: speciation and structure of the aggregates, Environmental Science and Technology, 34: 3242-3246.
29- Mikutta R., Kleber M., Torn M.S., and Jahn R. 2006. Stabilization of soil organic matter: Association with minerals or chemical recalcitrance, Biogeochemistry, 77: 25-56.
30- Motavalli P.P., Palm C.A., Parton Z.W.J., Elliott E.T., and Frey S.D. 1995. Soil pH and organic C dynamics in tropical forest soils, Journal of Soil Biology and Biochemistry, 27 (12): 1589-1599.
31- Muller T., and Hoper H. 2004. Soil organic matter turnover as a function of the soil clay content: consequences for model applications, Journal of Soil Biology and Biochemistry, 36 (6): 877-888.
32- Nannipieri P., and Eldor P. 2009. The chemical and functional characterization of soil N and its biotic components, Journal of Soil Biology and Biochemistry, 41: 2357-2369.
33- Nguyen B.V., Olk D.C., and Cassman K.G. 2004. Characterization of humic acid fractions improves estimates of nitrogen mineralization kinetics for lowland rice soils, Soil Science Society of American Journal, 68: 1266-1277.
34- Pronk G.J., Heister K., and Kögel-kanber I. 2013. Is turnover and development of organic matter controlled by mineral composition, Journal of Soil Biology and Biochemistry, 67: 235-244.
35- Rayment G.E., and Lyons D.J. 2011. Total Soil-N, Semi Micro Kjeldahl Automated Color, FIA. In: Rayment G.E. and Lyons D.J. (eds.). Soil Chemical Methods-Australasia, CSIRO Publishing, Melbourne.
36- Reichert J.M., Norton L.D., Favaretto N., Huang C.H., and Blume E. 2009. Settling velocity, aggregate stability, and interrill erodibility of soils varying in clay mineralogy, Soil Science Society of American Journal, 73: 1369-1377.
37- Rillig M.C., Caldwell B.A., Wösten H.A.B., and Sollins P. 2007. Role of proteins in soil carbon and nitrogen storage: controls on persistence, Biogeochemistry, 85: 25-44.
38- Sanderman J., and Maddern T. 2014. Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals, Biogeochemistry, 121: 409-424.
39- Scherer H.W., Feils E., and Beuters P. 2014. Ammonium fixation and release by clay minerals as influenced by potassium, Plant, Soil and Environment, 60 (7): 325-331.
40- Schimel J.P., and Schaeffer S.M. 2012. Microbial control over carbon cycling in soil, Front Microbiologica, 3: 1-11.
41- Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kogel-Knabner I., Lehmann J., and Manning D.A.C. 2011. Persistence of soil organic matter as an ecosystem property, Nature, 478: 49-56.
42- Scott E., and Rothstein D.E. 2014. The dynamic exchange of dissolved organic matter percolating through six diverse soils, Journal of Soil Biology and Biochemistry, 69: 83-92.
43- Six J., and Paustian K. 2014. Aggregate-associated soil organic matter as an ecosystem property and a measurement tool, Journal of Soil Biology and Biochemistry, 68: 4-9.
44- Six J., Elliott E.T., and Paustian K. 2000. Soil macro aggregate turnover and micro aggregate formation: a mechanism for C sequestration under no tillage agriculture, Journal of Soil Biology and Biochemistry, 32: 2099-2103.
45- Smernik R., and Skjemstad J. 2009. Mechanisms of organic matter stabilization and destabilization in soils and sediments: conference introduction, Biogeochemistry, 92: 3-8.
46- Vaieretti M.V., Perez H.N., and Gurvich D.E. 2005. Decomposition dynamics and physico-chemical leaf quality of abundant species in montane woodland in central Argentina, Journal of Plant and Soil, 21: 205-278.
47- Van Veen J.A., and Kuikman P.J. 1990. Soil structural aspects of decomposition of organic matter by micro-organisms. Biogeochemistry, 11: 213-233
48- Vogel C., Babin D., Pronk G.J., Heister K., Smalla K., and Kögel-Knabner I. 2014. Establishment of macro-aggregates and organic matter turnover by microbial communities in long-term incubated artificial soils, Journal of Soil Biology and Biochemistry, 79: 57-67.
49- Vogel C., Heister K., Buegger F., Tanuwidjaja I., Haug S., Schloter M., and Kögel-Knabner I. 2015. Clay mineral composition modifies decomposition and sequestration of organic carbon and nitrogen in fine soil fractions, Biology and Fertility of Soils, 1-17.
50- Von Lützow M., Kogel-Knabner I., Ekschmitt K., Matzner E., Guggenberger G., Marschner B., and Flessa H. 2006. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions, European Journal of Soil Science, 57: 426-445.
51- Voroney P., and Derry D. 2008. Origin and distribution of nitrogen in soil. Agronomy, 49: 1-30.
52- Walkley A., and Black I.A. 1934. An Examination of degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method, Journal of Soil Science, 37: 29-37.
53- Wood M., and Cooper J.E. 1988. Acidity, aluminum and multiplication of Rhizobium Trifolii: possible mechanisms of aluminum toxicity, Journal of Soil Biology and Biochemistry, 20: 95-99.
54- Yoder L. 1919. Adaptation of the mohr volumetric method to general determinations of chlorine, Journal of Industrial and Engineering Chemistry, 11(8): 755-755.
55- Yu W.H., Li N., Tong D.S., Zhou C.H., Lin C.X.C., and Xu C.Y. 2013. Adsorption of proteins and nucleic acids on clay minerals and their interactions: A review, Applied Clay Science, 80: 443-452.
56- Zech W., Nicola S., Guggenberger G., Kaiser K., Lehmann J., Miano T.M., Miltner A., and Schroth G. 1997. Factors controlling humification and mineralization of soil organic matter in tropics, Geoderma, 79: 117-161.
57- Zwarun A.A., Bloomfield B.J., and Thomas G.W. 1971. Effect of soluble and exchangeable aluminum on a soil Bacillus, Soil Science Society of American Journal, 35: 460-463.
CAPTCHA Image