ارزیابی شبیه‌سازی دما و بارشِ مدل‌های اقلیمی CMIP5 در مطالعات منطقه‌ای تغییر اقلیم (مطالعه موردی: مناطق عمده تولید گندم دیم در ایران)

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه فردوسی مشهد

چکیده

ارائه راهکارهای مناسب سازگاری و کاهش اثرات تغییر اقلیم در هر منطقه ملزم به پیش‌بینی‌های صحیح تغییرات اقلیمی در آن منطقه است. که خود این پیش‌بینی‌ها به شدت متکی به خروجی مدل‌های GCM است. اما وجود تعداد زیادی از این مدل‌ها و خروجی‌های متفاوت آنها در هر منطقه، باعث سردرگمی محققان در انتخاب آنها می‌شود. در این راستا عملکرد 21 مدل به‌روز GCM از CMIP5 بر اساس نمره مهارت ارزیابی شد و در ادامه پیش‌نگری از تغییرات دما و بارش طی سال‌های 2045-2065 و 2080-2100 تحت سناریوهای انتشار جدید RCP2.6 و RCP8.5 ارائه شد. از روش نگاشت هم‌فاصله‌ی تابع توزیع تجمعی، برای تصحیح خطای شبیه‌سازی مدل‌ها استفاده شد. ارزیابی منطقه‌ای شبیه‌سازی دما و بارشِ مدل‌های اقلیمی CMIP5 نشان داد، شبیه سازی‌ها با خطا همراه است و می‌بایستی قبل از استفاده تصحیح شوند. اگرچه تصحیح خطای سبب کاهش خطای غیرسیستماتیک شد اما خطای سیستماتیک در شبیه سازی مدل‌ها همچنان قابل توجه است. به دو طریق می‌توان نتایج شبیه‌سازی مدل‌ها را بهبود بخشید، اولاً، لحاظ کردن تمام گروه‌های یک مدل در تحلیل‌ها و دوماً یافتن ترکیبی بهینه از مدل‌ها متناسب با منطقه. از این‌رو ترکیبی بهینه از مدل‌ها متناسب با منطقه انتخاب شد (مدل‌های انتخابی). بالاترین متوسط مقدار نمره مهارت برای شبیه‌سازی متوسط سالانه بارش و دما به ترتیب 04/0 و 38/. مربوط به مدل‌های انتخابی، در بین ایستگاه‌ها بود. عدم قطعیت در پیش‌نگری‌های تغییرات دما و بارش در قرن حاضر، تحت تأثیر انتخاب سناریوی انتشار، دوره زمانی و مدل‌ها است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of Simulated Precipitation and Temperature from CMIP5 Climate Models in Regional Climate Change Studies (Case Study: Major Rainfed Wheat-Production Areas in Iran)

نویسندگان [English]

  • Mojtaba Shokouhi
  • Seied Hosein Sanaei-Nejad
  • Mohammad Bannayan Aval
Ferdowsi University of Mashhad
چکیده [English]

Introduction: Achieving sustainable practices of mitigation and adaptation to climate change requires accurate projections of climate change in each region. In this regard, Coupled Model Inter-comparison Project (CMIP) over the past 20 years has shown a good performance. Therefore, new CMIP5 climate models are expected to be bases for many climate change studies. These models use a new set of emission scenarios called Representative Concentration Pathway (RCP) to project climate change. Climate change is expected to impact wheat production and food security in Iran. So far, no study has not been conducted to regionally project climate change based on new CMIP5 models and RCP scenarios over the major wheat-producing areas in Iran. Our objective was to evaluate the performance of CMIP5 climate models in simulating temperature and precipitation in these areas. In addition, different combinations of climate models were evaluated to select appropriate models in these areas.
Materials and Methods: According to the latest data, nearly 60% of rainfed wheat is produced within our study area. The mean monthly temperature and precipitation data were provided by Meteorological Organization of Iran for synoptic stations. Period of 1975-2005 was considered as a historical period (baseline period). We evaluated outputs from 21 GCMs from CMIP5 climate models for monthly values of total precipitation and mean surface air temperature. One in ten ensembles of each GCM model was evaluated as available. We used model outputs for two emission scenarios i.e. RCP-2.6 and RCP-8.5, for the future periods of 2045–2065 and 2080-2100 to project temperature and precipitation changes. We assigned the models into two groups, high resolution (models less than 2° latitude/longitude, high-re; 11 models) and low resolution (models greater than 2° latitude/longitude, low-re, 10 models). Output GCM models were used for a grid in which recorded data are available. We applied the equidistant quintile-based mapping method (EDCDF) to correct bias of monthly precipitation and temperature simulated by models in the historical period (1975-2005) and, then in the future periods. We also used the root mean square error (RMSE), the coefficient of correlation and the skill scores (SS) to evaluate the model performance.
Result and Discussion: Average of all ensembles of an individual model outperformed the other ensembles in simulating the historical climate. This superiority is largely caused by the cancellation of offsetting errors in individual ensembles of a model, and also reduces the effects of natural internal climate variability in simulations. Taylor diagram showed, contrary to a simulation of temperature, simulations of precipitation have great variability than observations and the standard deviation of simulated precipitation values was less than that of observations for most used models. The models simulated temperature much better than precipitation across the region. Contrary to precipitation, the simulated temperature did not show a significant difference among the models. Several combinations of models resulted in an improvement in precipitation and temperature simulations. Therefore, a combination of models can be used in regional climate change assessment studies. The models performance for simulating the historical climate was evaluated based on skill score (SS) and Δ (the Euclidian distance from perfect skill, point (1, 1, 1, . . . , 1)). Many different combinations of 21 GCM models were evaluated, which combination of 7 models as selected models yielded a lower Δ and higher skill scores. For multimodal ensemble (MME) mean (All, high-re, low-re and Selected, models) Δ value was less than that for individual models. SS values in the simulation of precipitation were more than -3 for 75% of models during the high precipitation months. Uncertainty in the simulation of precipitation during the low precipitation months was more than that of high precipitation months and it was even much more in southern areas (especially in August and September). Uncertainties in temperature and precipitation changes projections were affected by the scenario, the time period and models selected. All models showed biases indicating the fact that direct use of such models in climate change studies (without bias correction) is not recommendable. Although the use of statistical methods for bias correction resulted in a significant reduction of nonsystematic biases, systematic biases were not considerably influenced. Precipitation will increase in northern areas toward the end of the century and a higher reduction in precipitation is anticipated in the southern areas. The average, long-term (2080–2100) temperature increase was 5.5°C under RCP-8.5. Further, temperature increase will be greater in the southern regions.
Conclusion: Performance of 21 GCMs from CMIP5 climate models were evaluated in major rainfed wheat-production areas in Iran and temperature and precipitation changes were projected under RCP-2.6 and RCP-8.5. Taking into account all GCM’s initial conditions (if they are available) leads to a better performance. Simulations of models exhibited biases, so models output must be corrected before they can be used in regional climate change assessment studies. Although bias correction resulted in a significant reduction of nonsystematic biases, systematic biases were not significantly affected. The MME (All, high-re, low-re and Selected, models) consistently outperformed individual models for both precipitation and temperature suggesting that a smaller group of models can be used in regional climate change assessment. We recognized a subset of 21 models (7 selected models) based on performance that combination of them can provide the best performance and plausible future projections.

کلیدواژه‌ها [English]

  • Biases correction
  • Emission scenarios RCP
  • Skill Score (SS)
  • Systematic biases
1- Aghakhani Afshar A., Hassanzadeh Y., Besalatpour A.A., and Pourreza Bilondi M. 2016. Seasonal Changes in Precipitation and Temperature of Mountainous Watersheds in Future Periods with Approach of Fifth Report of Intergovernmental Panel on Climate Change (Case study: Kashafrood Watershed Basin). Journal of Water and Soil, 30(5),1718-1732. (In Persian with English abstract)
2- Agricultural Statistics First Volume of Crop Production 2015-16 .2016. Center for Information Technology and Communications Jihad Agriculture. Available at http://amar.maj.ir/Portal/Home.
3- Aloysius N. R., Sheffield J., Saiers J. E., Li H., and Wood E. F. 2016. Evaluation of historical and future simulations of precipitation and temperature in central Africa from CMIP5 climate models. Journal of Geophysical Research: Atmospheres, 121(1), 130–152.
4- Barnett T. P., Pierce D. W., Hidalgo H. G., Bonfils C., Santer B. D., Das T., and Mirin A. A. 2008. Human-induced changes in the hydrology of the western United States. Science, 319(5866), 1080–1083.
5- Brekke L. D., Dettinger M. D., Maurer E. P., and Anderson M. 2008. Significance of model credibility in estimating climate projection distributions for regional hydroclimatological risk assessments. Climatic Change, 89(3-4), 371–394.
6- Ehret U., Zehe E., Wulfmeyer V., Warrach-Sagi K., and Liebert J. 2012. HESS Opinions“ Should we apply bias correction to global and regional climate model data?” Hydrology and Earth System Sciences, 16(9), 3391–3404.
7- Frame D. J., and Stone D. A. 2013. Assessment of the first consensus prediction on climate change. Nature Clim. Change, 3(4), 357–359.
8- Fuhrer J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment, 97(1–3), 1–20.
9- Koocheki A., Nasiri M., Kamali G. A., and Shahandeh H. 2006. Potential Impacts of Climate Change on Agroclimatic Indicators in Iran. Arid Land Research and Management, 20(3), 245–259.
10- Kotir J. 2011. Climate change and variability in Sub-Saharan Africa: a review of current and future trends and impacts on agriculture and food security. Environment, Development and Sustainability, 13(3), 587–605.
11- Lambert S. J., and Boer G. J. 2001. CMIP1 evaluation and intercomparison of coupled climate models. Climate Dynamics, 17(2-3), 83–106.
12- Li H., Sheffield J., and Wood E. F. 2010. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. Journal of Geophysical Research: Atmospheres, 115(D10).
13- Moss R. H., Edmonds J. A., Hibbard K. A., Manning M. R., Rose S. K., Van Vuuren D. P., and Wilbanks T. J. 2010. The next generation of scenarios for climate change research and assessment. Nature, 463(7282), 747–756.
14- Murphy A. H. 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Monthly Weather Review, 116(12), 2417–2424.
15- Pierce D. W., Barnett T. P., Santer B. D., and Gleckler P. J. 2009. Selecting global climate models for regional climate change studies. Proceedings of the National Academy of Sciences, 106(21), 8441–8446.
16- Ramirez-Villegas J., and Challinor A. 2012. Assessing relevant climate data for agricultural applications. Agricultural and Forest Meteorology, 161(0), 26–45.
17- Rangzan K., Shahbazi A., Jaride Z., and Kabolizadeh M. 2016. Evaluation CMIP5 Models In Order to Simulate Rainfall by using a Combination of Precipitation data Network Aphrodite and Satellite Precipitation Persian-cdr In Khuzestan Province. Journal of Water Science & Engineering, 6(14), 7–19. (In Persian with English abstract)
18- Seager R., Ting M., Held I., Kushnir Y., Lu J., Vecchi G., and Lau N.C. 2007. Model projections of an imminent transition to a more arid climate in southwestern North America. Science, 316(5828), 1181–1184.
19- Taylor K. E. 2001. Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192.
20- Taylor K. E., Stouffer R. J., and Meehl G. A. 2009. A summary of the CMIP5 experiment design. PCDMI Rep, 33.
21- Taylor K. E., Stouffer R. J., and Meehl G. A. 2012. An Overview of CMIP5 and the Experiment Design. Bulletin of the American Meteorological Society, 93(4), 485–498.
22- Terando A., Keller K., and Easterling W. E. 2012. Probabilistic projections of agro-climate indices in North America. Journal of Geophysical Research: Atmospheres, 117(D8), D08115.
23- Teutschbein C., and Seibert J. 2012. Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. Journal of Hydrology, 456, 12–29.
24- Watanabe S., Kanae S., Seto S., Yeh P. J., Hirabayashi Y., and Oki T. 2012. Intercomparison of bias correction methods for monthly temperature and precipitation simulated by multiple climate models. Journal of Geophysical Research: Atmospheres, 117(D23).
25- Wilks D. S. 2011. Statistical methods in the atmospheric sciences (Vol. 100). Academic Press.
26- Yoo C., Jung K., and Kim T. 2005. Rainfall frequency analysis using a mixed Gamma distribution: evaluation of the global warming effect on daily rainfall. Hydrological Processes, 19(19), 3851–3861.
CAPTCHA Image