##plugins.themes.bootstrap3.article.main##

رقیه نجفی پور هادی رمضانی اعتدالی بیژن نظری

چکیده

كشت­هاي گلخانه­اي نقش ويژه­اي در توليد محصولات كشاورزي دارند. آگاهي از ميزان دقيق نياز آبي در برنامه­ريزي توسعه گلخانه­ها از اهميت زيادي برخوردار است. هدف از اين پژوهش ارزیابی و ارایه مدلي برای برآورد تبخير و تعرق خيار در شرايط گلخانه­اي با استفاده از داده­های هواشناسی و مطالعه بهره­وری آب در تولید این محصول در قزوين است. در طي تحقیق، تغييرات دما، رطوبت، تشعشع، ارتفاع گياه و رطوبت خاک اندازه­گيري شد. با بررسي مدل­هاي رياضي مختلف، يک مدل تواني با پارامترهاي دما، رطوبت نسبي و ارتفاع گياه و با ضريب همبستگي 86/0 به عنوان بهترين مدل براي برآورد تبخير و تعرق خيار گلخانه­اي انتخاب شد. همچنين مقايسه تبخير و تعرق اندازه­گيري شده با روابط متداول تعيين تبخير و تعرق نشان داد كه در سطح اطمینان 99 درصد بین تبخیر و تعرق اندازه­گیری شده و تبخیر و تعرق برآورد شده با روش فائو پنمن مانتيث همبستگی وجود دارد. روش فائو پن‌من مانتيث با ضريب تبيين 42/0 از دقت بيشتري نسبت به ساير روش­ها برخوردار بوده و روش بلاني كريدل اصلاح شده با ضريب تبيين 24/0 كمترين دقت را دارد. همچنين بهره­وري آب در گلخانه­هاي کشت خيار فعال در استان قزوين مورد بررسي قرار گرفت. نتايج نشان داده بهره­وري آب خيار در گلخانه­ها از 23/9 تا 44/22 کيلوگرم بر متر مکعب متغير است. اين دامنه تغييرات مساله اهميت مديريت و بهره­برداري در ارتقاي بهره­وري آب در گلخانه­ها را خاطر نشان مي‌سازد. طبق برآوردهاي انجام شده در اين تحقيق اگر ميزان توليد فعلي خيار در استان در فضاي آزاد در گلخانه­ها کشت شود، به 117 هکتار گلخانه نياز خواهد داشت و با اين عمل نزديک به 15 ميليون متر مکعب آب صرفه‌جويي خواهد شد. با بررسي ساير جوانب اقتصادي و اجتماعي توسعه گلخانه­ها مي‌تواند در تسکين مشکلات کم آبي در استان کمک­ساز باشد.

جزئیات مقاله

کلمات کلیدی

تبخیر و تعرق, فائو-پن¬من-مانتیث, کم آبیاری

مراجع
1- Abedi-Koupai J., Amiri M.J., and Eslamian S.S. 2009. Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse. Aust. Journal Basic Appl. Sci. 3: 2528-2535.
2- Aly A.A., Al-Omran A.M., and Khasha A.A. 2015. Water management for cucumber: Greenhouse experiment in Saudi Arabia and modeling study using SALTMED model. Journal of Soil and Water Conservation 70(1): 1-11.
3- Asadi R., and Karandish F. 2016. Influence of irrigation management and drip irrigation laterlas on water use, yield and net benefits in greenhouse cucumber production. Iranian Journal of Soil and Water Research 47(1): 13-24. (In Persian)
4- Babtista J.F., Bailey B.J., and Meneses J.F. 2005. Measuring and modeling transpiration versus evapotranspiration of a tomato crop grown on soil in a Mediterranean greenhouse. Acta Horticulturae 691: 313–319. International Symposiom on Arid Region Soils, 21-24 Sep, Izmir, Turkey.
5- Baille A. 1994. Principles and methods for predicting crop water requirement in greenhouse environments. INRA-CIHEAM Cahiers Options Mediterraneennes 31: 177-187.
6- Blanco F.F., and Folegatti M.V. 2003. Evapotranspiration and crop coefficient of cucumber in greenhouse.Revista Brasileria de Engenharia Agricola e Ambiental 7(2): 285-291.
7- Buttaro D., Santamaria P., Signore A., Cantorea V., Boari F., Francesco F., Montesano F., and Parente A. 2015. Irrigation Management of Greenhouse Tomato and Cucumber Using Tensiometer: Effects on Yield, Quality and Water Use. Agriculture and Agricultural Science Procedia 4: 440–444.
8- Chartzoulakis K., and Drosos N. 1995. Irrigation requirements of greenhouse vegetables in Crete. INRA-CIHEAM Cahiers Options Mediterraneennes 31: 215-221.
9- Eliad G. 1988. Irrigation of greenhouse grown cucumbers. Journal of Horticultural Science 63(2): 235-239.
10- Harmanto Salokhe V.M., Babel M.S., and Tantau H.J. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agricultural Water Management 71: 225-242.
11- Hashem FA., Medany MA., Abd ElMoniem EM., and Abdallah MMF. 2011. Influence of green-house cover on potential evapotranspiration and cucumber water requirements. Annals of Agricultural Sciences 56(1): 49-55.
12- http://www.qazvin.ir/web/guest/14......(10/9/94)
13- Judah OM., and Rushdi Y. 1985. Yield response of cucumber to various levels of applied water under plastic houses in the Jordan valley. Dirasat Agricultural Science 12: 99-111.
14- Karimi N., Sadraddini SAA., Nazemi AH., Farsadizadeh D., Hossienzadeh Dalir A., and Dehghani F. 2010. Effects of Deficit Irrigation on Yield and Growth of Greenhouse Cucumber. Water and Soil Science 1(20): 15-25. (In Persian with English Abstract)
15- Kirda C., Cetin M., Dasgan Y., Topcu S., Kaman H., Ekici B., Derici MR., and Ozguven AI. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69: 191-201.
16- Kirda C. 1998. Evapotranspiration Measurments of Greenhouse Grown Tomato, Melon and Cucumber.
17- Liang X., Gao Y., Zhang X., Tian Y., and Zhang Z. 2014. Effect of Optimal Daily Fertigation on Migration of Water and Salt in Soil, Root Growth and Fruit Yield of Cucumber (Cucumis sativus L.) in Solar-Greenhouse. PLoS ONE 9(1): e86975. doi:10.1371/journal.pone.0086975
18- Litago G., Baptista F.J., Meneses J.F., Navas L.M., Bailey B.J., and Sanchez- Giron V. 2005. Statistical modelling of the microclimate in a naturally ventilated greenhouse. Biosystems Engineering 92(3): 365-381.
19- Lorenzo P., Medrana E., and Sanchez M.C. 1998. Greenhouse crop transpiration: an implement to soilless irrigation management. Acta Horticulturae 458: 113-119.
20- Mameli M.G., Sirigu A., Soddu A., Chessa F., and Meloni S. 2004. The use of microlysimeters for the measurement of ETM (maximum evapotranspiration) on camone tomato. Acta Hortic. 664: 377-382.
21- Mao X., Liu M., Wang X., Liu C., Hou Z., and Shi J. 2003. Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agricultural Water Management 61: 219-228.
22- Mazahreh N., Nejatian A., and Mousa M. 2015. Effect of different growing Medias on Cucumber Production and Water Productivity in Soilless Culture under UAE Conditions. Merit Research Journal of Agricultural Science and Soil Sciences 3(9): 131-138.
23- Medrano E., Lorenzo P., Sa´nchez-Guerrero M.C., and Montero J.I. 2005. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Scientia Horticulturae 105: 163-175.
24- Molden D. 1997. Accounting for water use and productivity. SWIM Paper 1. International Irrigation Management Institute, Colombo, Sri Lanka. 16 pp.
25- MÖller M., Tanny J., Li Y., and Cohen S. 2004. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agricultural and Forest Meteorology 127: 35-51.
26- Moslehi Sh., Najafi P., Tabatabaei SH., and Nourmahnad N. 2011. Effect of Soil Moisture Stress on Yield and Growth Indexes of Greenhouse Cucumber. Journal of Water and Soil 25(4): 770-775. (In Persian with English Abstract)
27- Salih A.M., and Sendi U. 1985. evapotranspiration under extremely arid environment. Journal Irrigation Drainge Engineering 110(3): 289-303.
28- Van Bavel C.H.M. 1967. Lysimeter measurments of evapotranspiration rates in the eastern states. Soil. Sci. Soc. Am. Proc. 25: 138-141.
29- Xuesen M., Mengyn L., and XinyuanW. 2003. Effectof deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain Agricultural Water Management 61: 219-228.
30- Yang X., Short T.H., Fox R.D., and Bauerle W.L. 1990. Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agricultural and Forest Meteorology 51: 197-209.
ارجاع به مقاله
نجفی پورر., رمضانی اعتدالیه., & نظریب. (2019). تعیین بهره¬وري آب و نياز آبي خیار گلخانه¬اي در قزوين. آب و خاک, 33(6), 811-822. https://doi.org/10.22067/jsw.v33i6.69882
نوع مقاله
علمی - پژوهشی