بررسی ارتباط فرآیندهای فرسایش‌‌بارانی با درصد شیب و محتوای رطوبتی پیشین در خاک‌‌های منطقه نیمه‌‌خشک

نوع مقاله : مقالات پژوهشی

نویسندگان

دانشگاه زنجان

چکیده

فرسایش بارانی نقشی مهم در تخریب خاک سطحی به ویژه در مناطق خشک و نیمه‌‌خشک ایفاء می‌‌کند. فرسایش ناشی از قطرات باران عامل عمده تخریب خاک مانند تراکم و مقاومت خاک و هدررفت خاک سطحی است. این پژوهش به‌منظور ارزیابی اثرات فرسایش بارانی بر هدررفت پاشمانی خاک، تراکم خاک و مقاومت سطح خاک تحت تأثیر درجه شیب و محتوای رطوبت پیشین در خاک‌‌های مختلف انجام شد. در این راستا شش نوع بافت خاک (رس، سیلت، لوم رسی، لوم سیلتی، لوم شنی و شن) در معرض بارانی با شدت 40 میلی‌‌متر بر ساعت به مدت 15 دقیقه در چهار درجه شیب (صفر، 10، 20 و 30 درصد) و چهار سطح محتوای رطوبت پیشین (هواخشک، یک‌‌چهارم اشباع، نیمه‌‌اشباع و اشباع) قرار گرفت. مجموعاً تعداد 288 جعبه خاک به ابعاد 35 سانتی‌‌متر × 25 سانتی‌متر با آزمایش فاکتوریل در قالب طرح کاملاً تصادفی مورد بررسی قرار گرفت. نتایج نشان داد که تفاوت معنی‌‌داری (01/0p<) بین خاک‌‌ها از نظر مقدار فرسایش پاشمان، تراکم خاک و مقاومت سطح وجود داشت. در میان شش بافت خاک‌‌ مورد پژوهش، خاک با بافت سیلت بالاترین میانگین فرسایش پاشمان (93/1574 گرم بر متر مربع بر ساعت)، تراکم خاک (43/17 درصد) و نسبت مقاومت خاک (53/10 بدون بعد) را داشت و خاک با بافت شن کم‌‌ترین میانگین فرسایش پاشمان (37/437 گرم بر متر مربع بر ساعت)، تراکم خاک (25/0 درصد) و نسبت مقاومت خاک (66/2 بدون بعد) را نشان داد. همچنین همبستگی معنی‌‌داری بین فرسایش پاشمان، تراکم خاک و نسبت مقاومت خاک با برخی ویژگی‌‌های خاک شامل درصد شن، درصد سیلت، میانگین هندسی قطر ذرات، چگالی ظاهری، هدایت هیدرولیکی اشباع و کربنات کلسیم معادل مشاهده شد. نتایج این پژوهش می‌‌تواند در مدیریت منابع آب و خاک به ویژه در اراضی شیب‌‌دار با خاک‌‌های حساس به فرسایش ناشی از قطرات باران استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the Relationships between Rainfall Erosion Processes, Slope and Antecedent Water Content in Semi-Arid Soils

نویسندگان [English]

  • ali baliani
  • Ali Reza Vaezi
University of Zanjan
چکیده [English]

IntroductionRainfall erosion results from the expenditure of the energy of falling raindrops and flowing water when these two agents act either singly or together. Soil erosion by rainfall is a serious ongoing worldwide environmental issue that contributes to soil and water quality degradation. Understanding raindrop-impact-induced erosion processes are key to design and apply soil management techniques that minimize and control soil erosion risk. Water erosion and especially raindrop-impact-induced erosion is the primary agents that cause soil erosion-induced degradation and has been identified as one of the major processes contributing to the soil and water quality degradation. Soil degradation caused by rainfall raindrops impacts the soil surface disperses and splashes the soil, and displaces particles from their original position. Raindrops striking the soil surface develop a raindrop-soil particle momentum before releasing their energy in the form of the splash. Other causes of soil degradation are including compaction and penetration resistance. 
Materials and Methods: This study was conducted to investigate the raindrop-impact-induced erosion in relation to slope gradient (0, 10, 20, and 30%) and antecedent moisture content or AMC (air dried, quarter saturation, semi saturation, and saturation). Toward this, six soil texture classes were exposed to simulated rainfalls with 40 mm h-1 in intensity for 15-min in four slope gradients and four antecedent moisture contents. Rainfall was simulated using rainfall simulator from soil erosion laboratory of the University of zanjan with 3-meter height and surface of 2 m2. A total of 288 experimental soil boxes with 25 cm × 35 cm dimensions and 5-cm depth were investigated using the completely randomized block design with three replications. Data of soil erosion processes include splash erosion particles amount caused raindrop impact, soil resistance ratio after rainfall using penetrometer, and compaction percent using bulk density after and before rainfall was measured and then compared using Duncan's test among the slope steepness and antecedent moisture content
 Results and Discussion: Significant relationships were found between the splash erosion rate, soil resistance ratio and soil compaction means (P<0.01. (The results showed that silt soil carried the highest mean value in splash erosion rate with 1574.93 gm-2 h-1, soil resistance ratio with 10.53 and soil compaction with 17.43 percent, while sand soil carried the lowest mean value in splash rate with 437.37 gm-2 h-1, soil resistance ratio with 2.66 and soil compaction  with 0.25 percent. Soil erosion processes were significantly affected by slope gradient and AMC. Soil erosion processes showed a decreasing rate in 0 slope degree and increasing rate in 30 slope degree and also decreasing rate in air dried and increasing rate in semi saturation AMC. Significant correlations (P< 0.01 and 00.05) were found between soil erosion processes and sand, silt, geometric mean particle diameter, bulk density, saturated hydraulic conductivity, and calcium bicarbonate equivalent. among the physical properties of the studied soils, the sand percentage, bulk density, and  Geometric mean diameter showed a negative significant correlation with splash erosion, soil compaction, and soil resistance, and the percentage of silt and calcium carbonate content with splash erosion, soil compaction, and soil resistance were positive significant correlated. The cause of this negative and positive correlation might be dependent on particles size and more percent of coarse particles, the transfer of particles from the soil mass is reduced due to raindrops and degradation processes occur with less intensity. In addition, destruction processes with more intensity occurred with increasing silt and lime percent.
 Conclusion: Increasing the slope gradient has an incremental effect on the amount of rainfall erosion processes i.e. sediment load, penetration ratio, and soil compaction value. However, antecedent moisture content in various soil textures has the different effect on the amount of rainfall erosion processes. Among the soil chemical properties, only calcium carbonate equivalent with splash erosion, density, and soil surface resistance was positively correlated and chemical properties such as a percentage of organic matter and exchangeable sodium percent no significant correlated with soil erosion processes. In other words, the physical nature of soil-forming particles such as particle size, as well as some of the chemical properties of soil particles such as organic matter, have a more effect on soil degradation, density, and soil resistance ratio. also the role of soil physical properties such as sand percent and calcium carbonate equivalent on the rainfall processes were more than soil chemical properties. In general, increasing the percent of silt and lime in the soil, unlike sand, was increased the sensitivity of the soil to the rainfall erosion and as a result increasing the splash erosion leads to increased soil compaction and soil resistance ratio.

کلیدواژه‌ها [English]

  • Rainfall simulation
  • Soil compaction
  • Soil properties
  • Soil resistance
  • Splash Erosion
- Assouline S., Tessier D., and Tavares-Filho J. 1997. Effect of compaction on soil physical and hydraulic properties: experimental results and modeling. Soil Science Society of America Journal, 61(2): 390-398.‏
2- Becher H.H. 1998. Resistances to penetration of aggregates fromloess-drived topsoils at different soil water tensions, Soil and Tillage Research, 47: 73–81.
3- Darvishan A.V., Dadeghi S., Homaee M., and Arabkhedri M. 2015. Affectability of runoff threshold and coefficient from rainfall intensity and antecedent soil moisture content in laboratorial erosion plots. Iran Water Research Journal, 8(15): 41-49. (In Persian)
4- Defersha M.B., and Melesse A.M. 2012. Effect of rainfall intensity, slope and antecedent moisture content on sediment concentration and sediment enrichment rati. Catena, 90: 47-52.
5- Dexter A.R., Czyz E.A., and Gate O.P. 2007. A method for prediction of soil penetration resistance. Soil and Tillage Research, 93(2): 412-419.‏
6- Diaz-Zorita M., and Grosso G.A. 2000. Effect of soil texture, organic carbon and water retention on the compactability of soils from the Argentinean pampas. Soil and Tillage Research, 54(1): 121-126.‏
7- Ekwue E.I., and Harrilal A. 2010. Effect of soil type, peat, slope, compaction effort and their interactions on infiltration, runoff and raindrop erosion of some Trinidadian soils. Biosystem Engineering, 105: 112-118.
8- Ghadiri H. 2004. Crater formation in soils by raindrop impact. Earth Surf Processes Landforms, 29: 77–89
9- Humberto B., and Lal R. 2008. Principles of Soil Conservation and Management, Springer.‏
10- Kemper W. D., and Rosenau R. C. 1984. Soil cohesion as affected by time and water content. Soil Science Society of America Journal, 48(5): 1001-1006.‏
11- Khalili Moghadam B., Jabarifar M., Bagheri M., and Shahbazi E. 2015. Effects of land usechange on soil splash erosion in the semi-arid region of Iran. Geoderma, 241–242: 210–220
12- Kianiharchegani M., Sadeghi H.R., and Asadi H. 2015. Comparative analysis of the effects of rainfall intensity and experimental plot slope on raindrop impact induced erosion (RIIE). Iran Soil and Water Research Journal, 46(4): 631-640. (In Persian)
13- Kinnell P.I. A., and Risse L. M. 1998. USLE-M: empirical modeling rainfall erosion through runoff and sediment concentration. Soil Science Society of America Journal, 62(6): 1667-1672.‏
14- Kinnell P.I.A. 2005. Raindrop-impact-induced erosion processes and prediction: a Review. Hydrological Processes, 19: 2815–2844.
15- Kinnell P.I.A. 2009. The influence of raindrop induced saltation on particle size distributions in sediment discharged by rain-impacted flow on planar surfaces. Catena, 78: 2–11.
16- Lal R. 2010. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Security, 2(2): 169-177.‏
17- Lanza N. 2011. Studying signatures of water on Mars at the macro and micro scales: Orbital analyses of hillslope geomorphology and ChemCam calibration for surficial rock chemistry, PhD dissertation, The University of New Mexico.
18- Lu J., Zheng F., Li G., Bian F., and An J. 2016. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China. Soil and Tillage Research, 161: 79-85.‏
19- Maroufpoor E., Faryabi A., Ghamarnia H., and Moshrefi Gh. 2010. Evaluation of uniformity coefficients for sprinkler Irrigation systems under different field conditions in Kurdistan Province. Soil and Water Resources, 5(4): 139-145.
20- Nord G., and Esteves M. 2005. PSEM_2D: A physically based model of erosion processes at the plot scale. Water Resources Research, 41(8):1-14
21- Page A.L., Miller R.H., and Jeeney D.R. 1992. Methods of soil analysis, part 2. Chemical and Mineralogical Properties, Soil Science Society American Publication. Madison (1159 pp.).
22- Rezaie Pasha M., Kavian A., and Vahabzade GH. 2012. Experimental study of splash erosion and its relation with some soil properties in three adjacent land uses (a case study: Kasilian Watershed). Journal of Water and Soil Science, 15(58): 257-269. (In Persian)
23- Rowell D. l. 1994. Soil Science: Methods and Application. Longman Group. Harlow, PP: 345.
24- Saedi T., Shorafa M., Gorji M., and Moghadam B.K. 2016. Indirect and direct effects of soil properties on soil splash erosion rate in calcareous soils of the central Zagross, Iran: A laboratory study. Geoderma, 271: 1-9.‏
25- Shirazi M.A., and. Boersma L. 1984. A unifying quantitative analysis of soil texture. Soil Science Society of America Journal, 48 (1): 142–147.
26- Smith C.W., Johnston M.A., and Lorentz S. 1997. The effect of soil compaction and soil physical properties on the mechanical resistance of South African forestry soils. Geoderma, 78(1): 93-111.
27- Soane B. D., and van Ouwerkerk C. (Eds.). 2013. Soil compaction in crop production, (Vol. 11). Elsevier.‏
28- Soil Survey Staff. 2014. Soil Survey Field and Laboratory Methods Manual. Soil Survey Investigations Report No. 51, Version 2.0. R. Burt and Soil Survey Staff (Ed.). U.S. Department of Agriculture, Natural Resources Conservation Service.
29- To J., and Kay B.D. 2005. Variation in penetrometer resistance with soil properties: the contribution of effective stress and implications for pedotransfer functions. Geoderma, 126(3): 261-276.‏
30- Truman C.C., and Bradford J.M. 1990. Effect of antecedent soil moisture on splash detachment under simulated rainfall. Soil Science, 150(5): 787–798.
31- Truman C.C., Bradford J.M., and Ferris J.E. 1990. Antecedent water content and rainfall energy influence on soil aggregate breakdown. Soil Science Society of America Journa, l54 (5): 1385-1392.‏
32- Utset A., and Cid G. 2001. Soil penetrometer resistance spatial variability in a Ferralsol at several soil moisture conditions. Soil and Tillage Research, 61(3): 193-202.‏
33- Vaezi A.R., and Ebadi M. 2017. Particle size distribution of surface-eroded soil in different rainfall intensities and slope gradients. Journal of Water and Soil, 31: 216-229. (In Persian)
34- Vaezi A., Akbari S., and Mohamadi M. 2015. Study of rainfall processes in calcareous soils aggregates under laboratory conditions in NW Zanjan, Iran. Iranian Journal of Soil and Water Research, 45(1): 87-94. (In Persian)
35- Vaezi A., Rostami S., and. Mohamadi M. 2012. Temporal variations of aggregates breakdown and splash particles processes in a marl soil under simulated rainfall. Iranian Journal of Soil Research, 25(4): 362-371.
36- Van Dijk A.I.J.M., Bruijnzeel M., and Eisma E.H. 2003. A methodology to study rain splash and wash processes under natural rainfall. Hydrology Process, 17: 153–167.
37- Watung R.L., Sutherland R.A., and Swaify S.A. 1996. Influence of rainfall energy flux density and antecedent soil moisture content on splash transport and aggregate enrichment ratios for a Hawaiian Oxisol. Soil Technology, 9: 251–272.
38- Wei Y., Xinliang W., and Chongfa C. 2015. Splash erosion of clay–sand mixtures and its relationship with soil physical properties: The effects of particle size distribution on soil structure. Catena, 135: 254–262.
39- Wu X., Wei Y., Wang J., Xia J., Cai C., Wu L., Fu Z., and Wei Z. 2017. Effects of erosion degree and rainfall intensity on erosion processes for Ultisols derived from quaternary red clay, Agriculture. Ecosystems and Environment, 249: 226-236.‏
40- Wuddivira M.N., and Camps-Roach G. 2007. Effects of organic matter and calcium on soil structural stability. European Journal of Soil Science, 58: 722–727.
41- Yoder R.E. 1936. A direct method of aggregate analysis and a study of a physical nature of erosion losses. Journal of American Agronomy, 28: 337-351.
CAPTCHA Image